Real-Time Cross-Sectioning of Dynamic Particle Systems

Pankaj Chaudhari*

Abstract

Particle Systems are extensively used to visualize a wide range of
complex phenomena and volumes. Flow visualization is one such
area where particle systems have capability to provide effective rep-
resentations of various fields. However, the usefulness of any visu-
alization system is strongly determined by its interactivity and by
understandability of the data it represents. A system must provide
means to explore the data, as exploration may reveal an insight that
a set of fixed images cannot. Representations of complex fields
and volumes using particles often lead to self-occluding structures.
This impedes better exploration by hiding details of complex re-
gions in the field. We provide a real-time interactive method for
taking cross-sections of any field represented by particle systems
without regenerating the particle dataset. This method enables a
user to dynamically change the orientations of the cutting planes to
observe details of the occluded regions from various view points.
Usage of this method is not limited to vector fields and can be ex-
tended, rather then directly used, to explore any dynamic volumes
generated using particles.

Keywords: particle system, cross-section, flow visualization, self-
occlusion

1 Introduction

Particle methods are commonly used to simulate complex systems
in various scientific domains. Most of the times, millions of par-
ticles are necessary to capture the behavior of a system accurately
and this leads to very large and complex particle datasets. A vi-
sualization system should be able to communicate subtle changes
in the three-dimensional field, organization of particles, and allow
for data exploration [2004]. Unfortunately, not all visualization
systems provide data exploration tools. In addition, rendering of
millions of particles degrades performance of the system. Thus, it
becomes difficult to provide any interactive methods for data explo-
ration.

Uberflow [Kipfer et al. 2004] exploits various capabilities of the lat-
est graphics hardware to improve the performance of particle sys-
tems. Kruger et al. [2005] further extend this work by providing
additional visual cues and using visualization geometries like par-
ticle lines and stream ribbons. These systems could handle only
a few thousands of particles. Ellsworth et al. [2004] handle a
terascale particle system, but required a cluster with around fifty
computational nodes and two data servers. Gribble et al. [2006]
later brought particle systems to the commodity hardware such as

*e-mail: pankaj2@umbc.edu

desktops. Rendering of millions of point sprites degrades the per-
formance and hence they employed a coherent hierarchical culling
technique to restrict the number of sprites to be rendered. They
also introduced data exploration methods like inter-particle reflec-
tion and ambient occlusion to enhance perception.

We describe a method that can be used for better exploration of dy-
namic particle systems by taking user-defined cross-sections of the
field. We create a texture that defines block-based visibility for each
particle and then use this value in the pixel shader to decide opacity
of each particle. This GPU-based method does not work with the
particle systems that use visibility culling techniques on the CPU
before sending the particle data to graphics hardware. We eliminate
this limitation by storing particle data in a way such that it facili-
tates cross-sectioning with block-level granularity on the CPU. Our
method applies to any particle system that renders particles indi-
vidually. Our method concentrates only upon the rendering of the
particles and does not deal with the calculation of particle traces
or generation of any particle dataset. This gives the ability to in-
vestigate a particular region of interest in a complex field without
regenerating the particle traces. Our goal is to provide an interactive
method to help using particle systems as a tool for better education
and research.

The remainder of the paper is organized as follows. In Section 2
we first review the related work done in the field of particle systems
used for flow visualization. In Section 3 we introduce a new method
that provides a GPU-based cross-sectioning of the particle systems
in real time. Section 4 provides an extension to our method to sup-
port visibility culling on the CPU. Performance and other results
are described in Section 5.

2 Related Work

Particle Systems have been used for flow visualization for the last
several years. Researchers have mainly focused on developing par-
ticle systems that provide real time performance with millions of
particles, but “human factors” are rarely applied to them [Tory and
Moller 2004]. Typically, such factors are task or domain depen-
dent. However, many cognition and perception-based theories pro-
vide design guidelines that can be used to generate a minimal set of
usability parameters. Particle systems have the potential to convey
minute details of complex flow fields and incorporating them with
techniques to explore the data they represent would be very valu-
able. Gribble et al. [2006] provided data exploration methods such
as interactive viewing and use advanced lighting models. Through
a formal user study they showed that their inter-particle reflections
and ambient occlusion methods help to improve perception of the
subtleties of complex particle systems. Ellsworth et al. [2004] pro-
vided various interactive modes by allowing filtering of particles
by seedpoints. They also allow an interactive manipulation of the
viewpoint and the current time step or allow time to move forward
automatically, animating the particles. Coloring the particles by
their age and the pressure in the field allows a user to distinguish
between the particles that are injected at different time steps. All
such features allow users to investigate and interrogate specific de-
tails of the field or the volume rendered. Visualization of particle
traces using different shapes can significantly improve the percep-
tion of various properties of the field like pressure, flow direction,
densities, etc. Kruger et al. [2005] used oriented ellipsoidal point
sprites and oriented arrow sprites to effectively depict the instanta-



neous direction in which a particle is moving. Oriented sprites help
understand the direction of the flow even using a still image.

Lane [1994] describes particle tracing as an “‘embarrassingly” par-
allel application and hence uses parallel but expensive hardware
such as Cray C90, Convex C3240 and SGI systems. Ellsworth et
al. [2004] uses a PC cluster with fifty computational nodes and two
high performance data servers to achieve parallelism and interactive
performance for a terascale particle system. However, many users
may not have such a large computational infrastructure. Therefore,
researchers have been focusing on developing particle systems suit-
able for commodity hardware. Kipfer et al. [2004] introduced the
very first GPU-based particle system, Uberflow, and demonstrated
the use of commonly available hardware to achieve a real-time per-
formance. Furthermore, Kruger et al. [2005] exploited the features
of more recent graphics accelerators to calculate particle traces us-
ing an embedded Runge-Kutta integration scheme. Calculation of
particle traces on GPU avoids data transfer from CPU memory to
graphics memory. This approach allows for interactive streaming
and rendering of millions of particles. Bruckschen et al. [2001]
uses an inexpensive RAID storage system attached to a Linux ma-
chine and scales for growing data set sizes.

Gribble et al. [2006] focus on rendering large and time-varying
data sets using graphics accelerators on desktop computers. They
exploit the point sprite rendering capabilities of GPUs to efficiently
render large number of high quality spherical glyphs using view
aligned billboards as the base primitives. In addition, they achieve
an interactive performance using Coherent Hierarchical Culling us-
ing CPU and GPU together for calculating the visibility of each
particle. Also, for handling time varying data, CHC is extended
to CHC-TV(Time Varying) that exploits temporal coherence be-
tween the frames. They also employ various advanced shading
models for global illumination using multipass fragment process-
ing. Compressed precomputed luminance textures are constructed
on the graphics processor and mapped to particles during the play-
back.

Tarini et al. [2006] use ambient occlusion and edge cueing to en-
hance perception of a molecule structure rendered using a million
particle system. They also allow for molecule cuts using a Z-
clipping plane to study the inside details. However, their system
does not allow the user to select multiple molecule cuts using cut-
ting planes with different orientations.

According to Melanie et al. [2004], adoption of usability factors
techniques by the visualization researchers is in its infancy. They
suggest allowing domain-independent subtasks such as overview,
zoom, filter, details-on-demand, relate, history, and extract. This
work is just a single step towards achieving this goal. We aim
to eliminate the need to regenerate particle traces by providing a
method for data filtering to observe details about user-specified re-
gions in a complex field or a volume.

3 GPU-based Cross-Sectioning

This section describes our method to generate a visibility texture for
the blocks that can be used to decide the visibility of a particle. This
method allows for user-defined cutting planes and we also provide
a mechanism to undo a cutting operation.

3.1 Space partitioning and Cutting Planes

A scene to be rendered may consist of multiple particle systems. We
define a bounding box for each particle system. This bounding box
is then divided into smaller blocks to form a three-dimensional grid.
These blocks decide the visibility of each particle. A user specifies

Figure 1: Figure on the right shows how a cutting plane shown in
the left figure can be selected. The user selects a point P1 in screen
space and drags to point P2. Pl and P2 are then converted to object
space as Pl, and P2,. P1, represents a point on the plane and
the vector (P2, — P1,) represents the normal to the plane.

a cutting plane in the screen space. We allow the user to specify
a cutting plane using a plane and its normal. These two points se-
lected in the screen space are then unprojected to the world space to
find the coordinates of the corresponding point on the plane and its
normal. This procedure is depicted in figure 1. Screen space does
not have any depth information. Thus, to obtain the depth informa-
tion required to project a point into object space, we use the current
depth value of at the selected screen coordinate. As the underlying
hardware does not allow for a lockable depth stencil buffer, we cal-
culate the depth information in pixel shader and store it in a texture
by exploiting the capability of GPU to render simultaneous targets.
Using multiple render targets decreases the performance, but makes
it easy to retrieve the depth information. Thus, to convert point
P1 to object space, it is first unprojected on the near plane, called
P1,,, and then on the far plane, called P1y. A ray is calculated as
P1; — P1,, and then using the depth information from the current
depth texture, exact coordinates in the object space are obtained as
follows:

P1, = P1, + normalize(Ply — P1,)

Similar calculations are done for point P2 by obtaining P2,. Thus
required point on the plane is P1, and its normal is P2, — P1,.

Blocks in the three-dimensional grid for each particle system are
then tested for their visibility against the user-defined plane and are
marked as visible or clipped accordingly. This allows for block-
level granularity for each particle system in the scene.

3.2 Building a Visibility Texture

Each particle system maintains its own visibility texture that can be
used later in vertex shader to decide the visibility of each particle.
This visibility texture defines the visibility of a particle system in
its own object space.

Figure 2: Visibility information is stored as a texture. Each texel
represents the visibility of a particular block in the grid. In this
figure, yellow texels represent the clipped blocks. For better under-
standability, a texture is depicted as a collection of layers, however
it is actually stored as a 2D texture.

Figure 2 describes how a visibility texture is generated for a par-



ticle system. This texture is passed to a vertex shader program to
correctly render the set of visible particles. Following code frag-
ment shows how a clipped particle is eliminated in a vertex shader.

floatd4d VS (float3 InPos : POSITIONO

{

: POSITION)

float w=1.0;
// visibility check in the object space
if (notvisible (VisibilityTexture, InPos))

w=0;
// transform
float3 Pos = mul (floatd (InPos, 1), (float4x3)World;
Pos = mul (float4d (Pos, 1), (float4dx3)View);

float4 outPos= mul (float4 (Pos, 1), Projection);
// eliminate the particle
if (clip && w==0)
outPos.w=w;
return outPos;

}

Elimination of these particles in the vertex shader stage ensures that
they do not affect the Z-buffering that is required to correctly render
the visible set of particles.

Besides its simplicity, the main advantage of using a visibility tex-
ture is that it can handle static as well as dynamic particle systems.
Furthermore, visibility textures are updated only when a clipping
plane is selected by the user. This avoids regeneration of visibility
information for each frame. Unlike previous systems, it allows for
specifying multiple clipping planes in different view spaces.

3.3 Compression

we currently use a 128-bit floating point visibility texture due to
hardware limitations. However, in practice, we can reduce this
storage requirement by using 8-bit or 4-bit integer textures. Fur-
thermore, visibility textures can be compressed by storing a single
bit information for each block. This requires extra computations in
the vertex shader, but reduces the memory required to store visibil-
ity textures for large grids. However, storing just a single bit would
not allow for an undo operation as described in the next section.

3.4 Allowing for an Undo operation

Figure 3: Left texture shows the visibility information about two
cutting planes. Right texture shows the texture after applying an
undo operation on it to unselect the upper cutting plane.

To support an undo operation to unselect previous clipping planes,
extra information for each block needs to be stored. By storing n-
bit information per block, we can support up to 2" undo operations.
We initialize the visibility structure with the value 0. Whenever a
clipping plane is selected by the user, corresponding clipped blocks
are found and each texel information is incremented by 1. Thus, to
allow for an undo operation, we just need to decrement, by 1, each
non-zero texel value in the visibility texture. Thus using n bits per
block we can store up to the information about 2" previous cutting
planes specified by the user. Using just a single bit information
does not allow for such a feature that is required for an accurate
selection of a clipping plane. In the current implementation, we

use 128 bits for each texel, as the underlying hardware does not
support any other texture format for texture lookup in vertex shader.
However, this selection is purely dependent on the availability of
the resources or complexity of the scenes. Figure 3 depicts how a
texture is manipulated during an undo operation.

4 Providing Additional Depth and Structure
Cues

Figure 4: Depth sprite used to render a particle as sphere. Each
texel on this sprite stores a depth information which is used in a
pixel shader to approximate current depth of the pixel by using an
approximated radius of the sprite to be displayed. Thus, every point
on a rendered sprite has a different depth information and this al-
lows for indicating intersections of the spheres.

As described earlier, particles rendered as imposters or glyphs often
produce self occluding structures. These structures are hard to vi-
sualize because the depth information and the structure information
cannot be provided. A dense molecule with thousands of atoms is a
perfect example of such an occluding structure. Tarini et al. [Tarini
et al. 2006] provides self-shadows, depth edges, structure edges,
halo effect and artistic rendering techniques to visualize complex
molecule structures. They use a multi-pass shader to achieve all
these effects. However, we try to provide some of these effects
by using just a single pass shader that further improves the perfor-
mance. In addition, we make use of depth sprite to render each
particle as a sphere and not just a shaded circle. This allows for
storing depth information for each pixel of the sprite which is then
used in a pixel shader to approximately render a sphere. Currently,
sprites overlap each other and do not provide any information about
the intersections of the particles. However, by using depth sprites
we can easily visualize these intersections. Figure 4 shows how
depth information is stored in a sprite. Artifacts produced due to
approximation are clearly seen in this figure.

Usage of depth sprites also allows us to depict structure edges
by using a single pass shader. Depth sprites are deliberately kept
darker at the edge of the circle. This allows for highlighting a
boundary of a sphere. A region where many spheres intersect can be
considered as a structure. In a structure, edge information is over-
lapped because of the intersections. However, at the edge of the
structure, where there are no intersections, this edge information
gets automatically highlighted. This approach allows for highlight-
ing outlines of various structures present in the molecule or any
dense particle system. However this method would provide poor
quality visualization for sparser particle systems as each particle
would eventually get drawn as a sphere with an outline. Quality of
our images is comparable to that of Tarini et al. [2006]. The next
section describes our results in detail.



Figure 5: In the first row, left figure shows an unclipped particle dataset and in the right figure, it is clipped by a simple horizontal plane.
Figures below are their corresponding side views to indicate how clipping helps in understanding the internal details of the field. In this
particular example, a streak of blue particles (circled) is revealed by clipping.

5 Results

5.1 Simulation of Hurricane Bonnie : A Dynamic Parti-
cle System

We tested our method on the hurricane Bonnie simulation dataset
containing around 6,000 particles. We rendered each particle using
a point sprite. Figure 5 shows how our method can be used to se-
lect a clipping plane in a view space and then observe the details
unveiled in another view space.

With this method we could achieve an interactive frame-rate rang-
ing from 20 fps to 200 fps. This frame-rate is varying because
the particle dataset is read from the disk per timestep and this I/O
operation puts limitations on achieving a constant frame-rate. This
particular particle system is not rendered using depth sprites.

5.2 Rendering of molecules : A Static Particle System

We applied our cross sectioning method to complex molecule struc-
tures. We obtained these molecule datasets from Protein Data Bank
website, http://www.pdb.org. These structures contain from 10,000
atoms to 40,000 atoms in them. We rendered these molecules using
depth sprites and achieved upto 20 frames per second and more for
molecules with around 10,000 atoms and above 12 frames per sec-
ond for molecules with around 40,000 atoms. Our performance is
limited because of simultaneous render targets used for storing the
depth information for selection of the cutting planes as described in
the previous section.

Figure 6 shows a cross section obtained for a molecule with around
12,000 atoms. While figure 7 shows cross sections for a molecule
with around 28,000 atoms.

6 Conclusion and Future Work

We presented a novel approach for taking cross sections of dynamic
particle systems having thousands of particles. Our approach of
cross sectioning allows for better exploration of dense particle sys-
tems. This is particularly useful in visualizing complex structures
like hurricanes and molecules. This method can further be extended
to work with any other volumes that can be rendered using particles.
We also provided various structure and depth cues using a single
pass shader. This method cannot achieve better performance be-
cause of the multiple render targets used to store depth information.
However, any advanced graphics hardware that supports lockable
depth stencil bufters would overcome this disadvantage of our sys-
tem. In future, we plan to implement compression techniques for
visibility structures.

References

BRUCKSCHEN, R., KUESTER, F., HAMANN, B., AND JOy, K. I.
2001. Real-time out-of-core visualization of particle traces. In
PVG ’01: Proceedings of the Institute of Electrical and Elec-
tronics Engineers 2001 symposium on parallel and large-data
visualization and graphics, Institute of Electrical and Electron-
ics Engineers Press, Piscataway, NJ, USA, 45-50.

CuNTZ, N., KOLB, A., LEIDL, M., REZK-SALAMA, C., AND
BOTTINGER, M. 2007. GPU-based dynamic flow visualiza-
tion for climate research applications. In Simulation und Visual-
isierung 2007 (SimVis 2007), 371-384.

ELLSWORTH, D., GREEN, B., AND MORAN, P. 2004. Interac-
tive terascale particle visualization. In VIS '04: Proceedings of
the Institute of Electrical and Electronics Engineers conference
on Visualization '04, Institute of Electrical and Electronics En-
gineers Computer Society, Washington, DC, USA, 353-360.



Figure 6: This figure shows how out cross sectioning can be used on a molecule. Leftmost figure show the occluding structure of a molecule
named 2IPY and adjacent figures show cuts taken. In the last to images two yellow molecules and a black molecule are revealed by the cut

taken.

Figure 7: Cross sections of 2B3Y molecule with 28,000 atoms in it.

GRIBBLE, C., AND PARKER, S. 2006. Enhancing interactive
particle visualization with advanced shading models. In APGV
’06: Proceedings of the 3rd symposium on Applied perception in
graphics and visualization, Association for Computing Machin-
ery Press, New York, NY, USA, 111-118.

GRIBBLE, C. P., STEPHENS, A. J., GUILKEY, J. E., AND
PARKER, S. G. 2006. Visualizing particle-based simulation
datasets on the desktop. In Proceedings of the British Human
Computer Interaction 2006 Workshop on Combining Visualiza-
tion and Interaction to Facilitate Scientific Exploration and Dis-
covery, 1-8.

KIPFER, P., SEGAL, M., AND WESTERMANN, R. 2004. Uber-
Flow: a GPU-based particle engine. In In Proceedings of the
Association for Computing Machinery’s Special Interest Group
on Graphics /European Association for Computer Graphics con-
ference on Graphics hardware, Association for Computing Ma-
chinery Press, New York, NY, USA, 115-122.

KRUGER, J., KIPFER, P., KONDRATIEVA, P., AND WESTER-
MANN, R. 2005. A particle system for interactive visualiza-
tion of 3D flows. Institute of Electrical and Electronics Engi-
neers Transactions on Visualization and Computer Graphics 11,
6 (December), 744-756.

LANE, D. A. 1994. UFAT: A particle tracer for time-dependent
flow fields. In VIS ’94: Proceedings of the Institute of Electrical
and Electronics Engineers conference on Visualization *94, In-
stitute of Electrical and Electronics Engineers Computer Society
Press, Los Alamitos, CA, USA, 257-264.

TARINI, M., CIGNONI, P., AND MONTANI, C. 2006. Ambient
occlusion and edge cueing for enhancing real time molecular vi-

sualization. IEEE Transactions on Visualization and Computer
Graphics 12, 5 (September), 1237-1244.

TORY, M., AND MOLLER, T. 2004. Human factors in visualization
research. Institute of Electrical and Electronics Engineers Trans-

actions on Visualization and Computer Graphics 10, 1 (January),
72-84.



Figure 8: Various depth and structure cues provided in a single pass shader. Top row, from left to right: original molecule, structure edges
obtained due to depth sprites, molecule with depth information. Bottom row, left to right: molecule rendered along with the structure edges,
molecule rendered with structure edges as well as depth information on the spheres, lastly the same molecule is rendered to indicate the depth
of each sprite.



