
1

Hardware Accelerated Environment Deformation
Nicholas D. Marinelli

Abstract

Video games continue to become more and more interactive and
dynamic as technology progresses. There are always more small
items manipulated by physics, the AI becomes more and more
adaptive to the player, and the areas to explore keep growing
larger. Even though all these factors are growing, the player’s
interaction and effect with the world itself (rather than the things
residing in the world) remains minimal. This paper presents a
method to add real time deformation to the world around the
player. Specifically, 3-dimensional bullet holes to replace the
commonly accepted 2-dimensional decal.

Keywords: Interactive, Environment Deformation, Geometry
Shaders

1. Introduction

Modern video games are plagued with having static environments.
Despite advances in real-time physics which have allowed
moveable objects in the world, the world itself is affected very
little by the player. In games involving gunfire and explosions,
this is particularly noticeable, as guns may leave bullet-hole
decals, and explosions may leave black decals, but aside from
these superficial marks, the world remains unchanged. This
paper’s goal is to use the latest features in graphics hardware and
Direct3D 10 to implement a real-time, hardware accelerated
environment deformation system.
The “Red Faction” series of games for the Playstation2 and PC
implemented a primitive form of world deformation which was
dubbed “GeoMod.” Though this method did provide for a
deformable world, it was not without its limits. All the holes
created were roughly the same shape and size, regardless of the
way they were hit. In addition, the number of holes was also
greatly limited. After a short while, new holes would not appear.
The method was also implemented completely in software, so if
multiple holes were created concurrently, a great deal of
slowdown could occur.
The aim of the paper is to eliminate some of the problems
associated with the original “GeoMod.” Geometry shaders will be
used to implement this new method. The geometry shader is an
intermediary step in the programmable pipeline, between the
vertex shader and the pixel shader, and was recently introduced in
Direct3D 10 [Blythe, 2006] (and extensions for OpenGL
[NVIDIA, 2007]). As opposed to vertex shaders, which know
only of single vertices being passed into them, and pixel shaders,
which know only of single pixels being passed to them, a
geometry shader is passed three vertices at a time, effectively
giving it knowledge of an entire triangle. Knowing about an entire
triangle easily allows the programmer to create new triangles that
have a meaningful relationship with the original triangle. Figure 1
shows an example from the Direct3D 10 SDK in which the
triangles of a model are separated from each other, demonstrating
the level of control given to a programmer. In addition, to entire
triangle manipulation, the geometry stream-out feature allows
newly created geometry to be fed out from the geometry shader
back to the beginning of the pipeline. This allows the GPU to
cumulatively keep track of any new triangles and not force it to
either recalculate every new triangle created with every frame, or
force the CPU to keep track of the ever changing geometry.

Figure 1: The geometry shader allows for manipulation of entire
triangles, as opposed to just vertices.

With this paper, a demo is presented, created with C++ and
HLSL, which will allow a user to create the holes in the world
around them. Since DirectX 10 geometry shaders, like any other
shader, concentrate on local information, the very large holes
created in “Red Faction” will be set aside, and the main goal
will be to create 3D holes caused by bullets, rather than the
standard 2D decals usually seen today. This paper removes the
limitations on number of holes, and the greatly increases the
speed at which they are calculated. In addition, the holes will
vary in size and shape, repositioning and creating vertices based
on a radial function centered at the point of impact. Research
and consideration is also put into making the holes be dependant
on adjacent holes, the material of the original surface, and the
angle at which the shot intersects with the surface. Other
methods are also considered which would allow very large hole
spanning multiple triangles to be created, usually caused by
some kind of explosion. These methods could be used to re-
implement the global scene modification that “Red Faction”
introduced, but incorporate all the advances that are made
possible through the latest generation of graphics hardware.

2. Related Work

2

The driving inspiration in this research was the work done by
Volition Inc. in their “Red Faction” series of video games. To
date, this is the only series of video games to feature the manner
of terrain deformation that they created. As stated previously,
though, the technology was limited. Unfortunately, most of their
work is proprietary and was never submitted to any kind of
graphics symposium such as SIGGRAPH or I3D.
Steven Workman [2006], however, saw the work done by
Volition and aimed to create a realistic real-time cracking method
for individual objects in a world. His approach incorporated many
realistic concepts as he incorporates the physics of the forces
interacting on the object (coupled with textures of object density),
to calculate how an object is destructed. His methods of
determining breakage points are very complex and thorough. It is
possible to use the theory for his methods in the hardware, but not
go through the great lengths of incorporating the most physically
plausible breakage possible.
Workman took many ideas from O’Brien and Hodgins [1999] and
optimized them to make them suitable for a real-time
environment. The main difference between O’Brien’s research
and Workman’s is that O’Brien calculates stress and likely
fracture points while the simulation is running, while Workman
pre-calculates them and stores them in a texture. Both O’Brien’s
and Workman’s methods differed greatly from a method used to
simulate construction [Kamat and Martinez 2003] in real time,
which used a constantly updating 3D terrain database to keep
track of the displacement of land during a construction process.
David Blythe originally showed off the power of Direct3D 10 at
SIGGRAPH [2006]. He demonstrated how the power of geometry
shaders could be used for various environmental effects. The
stream-out feature, which could feed back to the vertex shader
new geometry produced by the geometry shader, was also a key
idea in this new technology. Research yielded other examples
[Tariq 2006, Blythe 2006] on specific syntax and usage of
Direct3D 10 technology.
On a simpler approach, which implements a makeshift approach
to the problem of replacing 2d bullet decals, Woodhouse [2003]
uses stencil buffers to not draw areas where decals are, and then
project the decals texture behind that area. Though effective for
the older hardware that it would work well with (voodoo 3 and
up), the latest graphics hardware was designed specifically to
handle this task in a better fashion, and using the geometry shader
to do that is exactly what this paper is intended to show.
Displacement maps were a concept first shown in “Shade Trees”
[Cook, 1984]. By storing a displacement amount in a texture on
the surface, the vertices on the surface could be manipulated. The
RenderMan Companion [Upstill, 1989] demonstrated the use of
displacement maps to allow patches of displaced material. Though
each patch can create a believable effect on its own, the patches

cannot interact with each other. When two patches overlap, they
will not magnify the displacement in either patch, and may even
simply overlap the existing patch.

3. Implementation

This paper implements a demonstration of the methods
described using a sample Direct3D application which loads a
model and allows the user to click on any point of that model.
The normalized screen coordinates of that mouse click are then
passed to the shader. Based on these coordinates, the shader is
able to create a ray and determine if the user clicked on a
specific polygon. This process is more commonly known as
“picking.” Any geometry can be loaded into the program, but
for simplicity’s sake, a wall model is used to fully demonstrate
how the method could be best used.

3.1 Intersected Triangle Manipulation

The primary function of the geometry shader program
implemented takes in the normalized screen coordinates as
parameters passed in by the program. It then uses these
coordinates to trace a ray and determine if the mouse click
intersects the current triangle being run through the shader. If
the ray intersects the triangle, the intersection point is known as
the “impact point,” and a new vertex is created at that point.
This vertex is then displaced slightly into the model, to simulate
how far a bullet would penetrate. The vertex is displaced in the
opposite direction of the normal of the surface. Three new
triangles are then created, each using two of the original vertices
and the newly created vertex, and the original triangle is
discarded, as it would block the hole if it were kept. Figure 1
illustrates the three new triangles being created due to the
introduction of the impact vertex. In addition to the impact point
being displaced towards the inside of the model, the original
three vertices are displaced at as well.
Based on how close a vertex is to the impact point, the vertex
will be recessed farther into the model. The closer to the ray is
to the intersection point, the greater the effect becomes. This is
determined using a Gaussian fall-off. With the distance between
the impact point and a given vertex in the current triangle, the
Gaussian function is used to make each vertex be displaced in
the same direction as the impact point, but with a displacement
distance equal to a fraction of the impact point’s displacement
distance.

3.2 Surrounding Triangle Manipulation

Impact pointVertex 1

Vertex 2

Vertex 3

Vertex 1

Vertex 2

Vertex 3

New vertex

Figure 2: Three new triangles are created, using the impact point as a
new vertex

3

In addition to the triangle that is actually hit by the projectile, the
effect should be felt by surrounding triangles as well. Vertices
were originally thought to be shared between adjacent triangles by
default. This turned out to not be the case. The intended effect
could not be created by passing regular triangle lists to the
geometry shader. Adjacency information is required to be
included in the triangle list for this to be possible. Unfortunately,
there was not enough time to implement this feature. The original
theory was that since the impacted triangle’s vertices are
displaced, the immediately surrounding triangles should
automatically affected by the initial vertex displacement done on
the triangle containing the impact point, as these triangles share
the displaced vertices with that original triangle. The geometry
shader, however, did not act as expected, and the entire bullet hole
became displaced, rather than pulling the surrounding triangles
with it. If adjacency information was included with the incoming
triangle list, then the shader would have access to the adjacent
triangles, and would be able to deform along with the impacted
triangle.
An optional feature is possible, but not implemented, which
would allow non-adjacent triangles to be affected by the impact.
This would involve taking the proximity of the triangle to the ray
of the projectile into account. This is discussed in the future work
section.

3.3 Geometry stream-out

Recalculating the sum of all changes made to the geometry with
ever hole made would not only be inefficient in processing time
on the GPU, it would also bog down the CPU a great deal as it
would need to keep track of what holes have been created and in
what order. This is the primary motivation behind using the
stream-out feature associated with geometry shaders. Using the
stream-out, the newly created geometry can be saved, and the next
set of calculations can be done on the newly saved geometry,
rather than having to recalculate every hole on every frame.
Figure 2 shows the Direct3D 10 pipeline. Triangles may be
streamed out after the geometry shader stage into vertex buffers.
These buffers are then recycled into the input assembler stage.
The stream out stage takes place immediately after the geometry
shader (or vertex shader if one so desires). It can either be fed
directly back into the input assembler, or the user can declare in
their code one vertex buffer meant for streaming out (of the GPU)
and one buffer meant for drawing from. These buffers cannot be
the same and must be designated as being used with stream-out.
Work was initially started to bring the stream-out data back onto
the CPU. Though the buffer is returned to the CPU, no extra
manipulation or calculation is necessary, as it has all been done on
the CPU. The CPU need only pass the vertex buffer back into the
GPU. As the geometry shader runs, and more holes are created,
this newly formed geometry is streamed out. When it is streamed
back into the GPU, the geometry shader is now performing its
intersection tests against the previously deformed geometry,
rather than the original. As this process loops, it allows more
holes to be created. Due to time restrictions, and very poor
Direct3D documentation, however, the stream-out feature was
unable to be completed.

4. Results

The results of the primary research goal were partially successful.
Given any triangle, it could divide it into three and recess it into
the surface. Attempts to implement surrounding triangle

manipulation and persistent deformation through stream-out
were unsuccessful, as previously stated. Figure 4 demonstrates
how the entire hole is displaced due to lack of adjacency
information, while figure 5 performs the impact on every
surface, but without initial vertex displacement.

Figure 3: The Direct3D pipeline. The geometry shader stage and
stream output are the two biggest additions.

5. Conclusions

Due to time constraints and a lack of understand of the usage of
Direct3D 10, this research fell short of expectations. Though
considerable thought was put into every stage, the actual use of
the D3D API proved to be far more difficult than expected.
In addition, the method has a number of shortcomings. Since it
divides the impacted triangle into 3 parts, it requires a highly
tessellated surface to reach the desired effect. In addition, the
hole itself will always be triangular. Though the vertices of the
triangle move, affecting the triangles around it, the hole itself
remains a triangular hole. Though this research does address the

4

issue of 3-dimensional bullet holes, there is great room for
improvement.
Direct3D 10 is a very new technology as well. Documentation and
examples for even the most common functions is currently near
impossible to find, which adds an immense amount of difficulty in
attempting to implement this method. OpenGL should have been
given more consideration, as geometry shaders are possible with
it. Direct3D 10’s stream out feature is very poorly optimized, as
well. This, in conjunction with the still very young hardware in
the latest graphics hardware, will cause a great deal of processing
overhead until the technology becomes more widespread.

6. Future work

There are a number of possible features that could be added onto
this research in order to address the shortcomings discussed
previously. To rely less on an initially highly tessellated surface,
upon impact, the surface could be recursively subdivided into
smaller sets of triangles, until the desired tessellation is achieved.
This would allow for the effect to be retained, removing the
burden of making the surface work will with the shader off of the
artist designing the geometry.
In the same vein as “Red Faction,” explosions could generate
larger holes than a bullet would. This could potentially be done by
adding more attributes to the projectile, and if the impacting
projectile creates an explosion, vertices not in the impacted
triangle would also be put into consideration. This could
potentially be accomplished by determining how close the
projectile passes to the triangle through a barycentric coordinate
test. Using the same Gaussian fall-off, the vertices would be
displaced in a direction away from the path of the projectile.
A non-triangular hole would add more realism to the shader. By
creating several new vertices inside the impacted triangle, instead
of just one, a hole of a more realistic shape would be created in
the triangle. Realistic cracking algorithms could also be
implemented on top of this method. Since Workman’s algorithm
[2006] was based on textures of weakness in a material, these
textures could be considered during the geometry shader stage,
and the shape of the hole created accordingly.
It would also be a true demonstration of this method’s purpose, if
the shader could be generalized to be used outside of a simple
Direct3D window, and used as an actual material of a surface in a
video game.

References

1. David Blythe, "The Direct3D 10 system," SIGGRAPH 2006,
pp. 724 – 734.

2. Vineet R. Kamat, and Julio C. Martinez, "Automated
Generation of Large-Scale Dynamic Terrain in 3D Animation
of Simulated Construction Processes," CONVR2003, pp. 63-
76.

3. Sarah Tariq, "DirectX10 Effects," SIGGRAPH 2006,
http://developer.download.nvidia.com/presentations/2006/sigg
raph/dx10-effects-siggraph-06.pdf.

4. David Blythe, “Direct3D 10,”
http://www.csee.umbc.edu/~olano/s2006c03/ch02.pdf, 2006.

5. NVIDIA, “NVIDIA OpenGL Extension Specifications for the
GeForce 8 Series Architecture (G8x),”
http://developer.download.nvidia.com/opengl/specs/g80specs.
pdf, 2007.

6. Steven Workman, “A Cracking Algorithm for Destructible 3D
Objects,” http://www.dcs.shef.ac.uk/~aca03sw/report.pdf,
2006.

7. James F. O’Brien, and Jessica K. Hodgins, “Graphical
modeling and animation of brittle fracture,” SIGGRAPH
’99, pp. 137-146.

8. Francis Woodhouse, “3D Decals,”
http://www.gamedev.net/reference/articles/article1986.asp,
2003.

9. Robert L. Cook, “Shade Trees,” SIGGRAPH 1984, pp. 223-
231.

10. Steve Upstill, “RenderMan Companion: A Programmer's
Guide to Realistic Computer Graphics”, 1989

Figure 4: Displacing the original triangles vertices moves
the entire impact crater

Figure 5: Demonstration of each triangle being impacted.
(Top portion a artifact of improper stream-out)

