Distributed Ray Tracing of Mirages

Michael D. Wilson*
University of Maryland, Baltimore County

Abstract

To further increase the realism of ray tracing, we take the idea of
distributed ray tracing and add on to it mirage rendering. Mirages
are seen quite often in our daily lives, and in order to make com-
puter generated images look as realistic as possible, it is necessary
to add things, such as mirage rendering, that are seen in the natural
world.

Mirages are caused by light passing from colder air to warmer air.
When this happens, the light bends in relation to the temperature
gradient [Wikipedia 2007]. Mirages can be most often found on
roadways and on the hoods of cars, looking somewhat like a liquid.
In this paper, mirage rendering will be implemented using a tech-
nique described by Berger, Trout, and Levit wherein the parabolic
equation that mirages adhere to is approximated using a multilay-
ered box capable of internal reflectance and refraction [1990].

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image Gen-
eration; 1.3.7 [Computer Graphics]: Three-Dimensional Graphics

and Realism;

Keywords: ray tracing, refraction, mirage

1 Introduction

To introduce ray tracing, one should first look at the intensity equa-
tion related in Cook’s paper [1984]:

1(6,,6,) = /
¢; JO;

where

L = the illumination function

R = the reflection function
(¢i,6;) = angle of incidence
(¢r,0,) = angle of reflection

Most ray tracing attempts today approximate this equation via a va-
riety of methods, typically using simplifying assumptions and over-
sampling.

The most prevalent (and simplistic) ray tracing technique, Whitted-
style ray tracing, does not take into account many effects and phe-
nomena we observe in nature [Whitted 1980]. A ray tracer that
could accurately simulate every natural phenomena would be in-
credibly expensive to solve analytically.

*e-mail: mwilson3 @umbc.edu

There have been several techniques for a more accurate analysis
of the intensity equation. The one focused on in this paper is dis-
tributed ray tracing [Cook et al. 1984], which approximates the in-
tensity equation by oversampling several things while ray tracing a
scene:

1. The camera lens is oversampled, yielding a depth of field ef-
fect.

2. Shadows are oversampled, which results in softer, less rigid
shadows, which are called penumbras.

3. Refraction and reflection rays are oversampled, resulting in
softer versions of refraction and reflection. These soft ver-
sions are called translucency and gloss respectively.

This technique was chosen for its ease of understanding and relative
simplicity, though most ray tracing techniques could be adapted for
this purpose.

Typically, computer graphics in general are improved upon to more
accurately reflect the natural world. Though it has been mentioned
that at the present, a completely accurate ray tracer would be too
computationally expensive to compute in a reasonable amount of
time, improving realism via approximations can yield fairly accu-
rate and visually appealing results. Additionally, approximations
can cut computation time down considerably, which makes using
them more attractive.

For this reason, the author of this paper has decided to add mirage
rendering to a distributed ray tracer. In the introduction, it was men-
tioned that light bends through the air conforming to a parabolic
curve when a temperature gradient exists in the air. A special ob-
ject which we can refer to as a mirage box can be used to approx-
imate this parabola. Its implementation will be described later in
this paper.

2 Related Work

As was mentioned earlier, distributed ray tracing is a major com-
ponent of this paper. Distributed ray tracing simply oversamples at
several points in the rendering process, and yields more accurately
ray traced images because of it [Cook et al. 1984]. Refer to the
introduction section for a more thorough explanation.

Another technique that improves upon the realism of ray tracing is
the metropolis light transport technique [Veach and Guibas 1997].
The MLT technique achieves very impressive results using a Monte
Carlo algorithm that samples the paths from light sources to the
lens. This method creates very convincing looking global illumi-
nation effects, which were not considered by this paper. The MLT
technique was not selected for this paper due to its slightly more
complicated math.

Mirage physics are explained well by Andrew Young [2006]. This
article explains that mirages are not optical illusions, which is a
common misconception. It discusses the bending of light through
thermal gradients of air, and clarifies this with the term “atmo-
spheric refraction.”

Other attempts at ray tracing natural phenomena include ray tracing
fog, clouds, flames, dust, and other types of particle effects [Kajiya
and Herzen 1984]. This paper discusses the physics behind fog and



Figure 1: Translucency and gloss are correctly modeled.

mathematical equations associated with it. Kajiya and Herzen are
able to solve these equations, which are too difficult to solve ana-
lytically, by making a number of assumptions that ease the compu-
tational complexity.

3 Implementation

The implementation of this ray tracer was tackled in two separate
stages. First, the distributed ray tracer was implemented. Second,
the mirage rendering capability was implemented. The NFF spec-
ification needed to be modified to support the new additions to the
ray tracer as well.

3.1 Distributed ray tracer

The distributed ray tracing stage was relatively simple. There were
four things that needed to be implemented that were listed earlier in
this paper, though they will be listed here again for ease of reading:

1. Depth of field
2. Penumbras
3. Translucency
4. Gloss

Implementing all of these was a matter of modifying an existing ray
tracer to handle these components.

In order to implement depth of field, the eye point was viewed as
a lens of sorts. Random points were taken from the surface of the
lens, and then each of these samples were then used as an “eye
point,” used normally in the ray tracing function, and averaged to-
gether. This produced acceptable depth of field type effects.

Penumbras were handled similarly. To produce them, a standard
shadow ray was traced normally (standard shadows can be observed
in figure 1). Then several other rays were distributed randomly
around the shadow ray, all pointing in generally the same direc-
tion. These are averaged together, producing results like those seen
in figure 2.

Figure 2: Penumbras display correctly.

Finally, translucency and gloss could be handled similarly. A func-
tion was added that fired a ray off normally, then added sample rays
around that direction, and averaged them together. You can see the
results of this in figure 1.

There is a motion blur component to distributed ray tracing, which
can be implemented by sampling at the same point over a series of
frames. However, for the purposes of this project it was unneces-
sary to implement, as the author of this paper was not concerned
with motion.

3.2 Mirage rendering

Mirage rendering was a relatively simple addition to this ray tracer.
Mirages are created by light bending through the air in the shape
of a parabolic curve [Wikipedia 2007]. While analytically solving
this would add a lot of computational complexity to a ray tracer, the
path can be approximated through the use of a multilayered mirage
box [Berger et al. 1990].

Each layer of the mirage box is capable of refraction or reflection.
When a ray enters the mirage box, it can be refracted and reflected
in an approximately parabolic shape. This can create very convinc-
ing results.

This was implemented using a series of four-vertex polygons. The
ray tracer used for this project already had a polygon rendering fa-
cility built in. Adding the mirage box was as simple assembling
planes in a box type shape and making them all transparent and
refractive.

4 Results

Several figures already present in the document show the efficacy
of the distributed ray tracing part. Unfortunately, the distributed
ray tracing component severely decreased the performance of the
ray tracer. Instead of having a maximum of seven rays per pixel (as
the ray tracer limited the number of ray bounces to seven), it was
now possible to have upward of samples’ per pixel, which is a
significant increase. More generally, you will get samples®°vmees
possible rays.



Figure 3: Penumbras display correctly.

The mirage box too decreased the performance of the ray tracer.
When using a mirage box, the number of bounces necessary can
become extremely large (greater than the five that the ray tracer
was originally limited to). The number of bounces was increased
to seven, as any larger generally decreased performance unreason-
ably. The 256x256 pixel picture in figure 4 took 38 minutes and 57
seconds to render on a AthlonXP 2400 with 1 GB of RAM running
Ubuntu Linux 7.04. Samples were decreased to 1 for this rendering.

Due to a lack of resources, the author was unable to capture a pic-
ture of mirage ray tracing working with distributed ray tracing ef-
fects enabled. However, it is demonstrable that the mirage box
works (see figure 4) and translucency works (see figure 5). There
is no reason that both would not work in tandem given greater pro-
cessing power.

Disregarding performance, however, one can see by looking at fig-
ure 4 that the mirage box does indeed work. The scene after having
been refracted through the image box takes on a “mirage-like” ap-
pearance, which was the goal of this paper.

5 Future Work

There are several very obvious directions to take this paper in. The
most obvious would be to speed up the ray tracer. This can be
done several ways, via mathematical optimization of calculation,
reduction of overhead, introduction of optimizing data structures
(octrees, kd-trees), etc. Doing this would make it significantly eas-
ier to test.

Additionally, one could substitute another more accurate algorithm
for distributed ray tracing. The metropolis light transport would
make an interesting combination with mirage rendering due to the
accuracy of its global illumination and lighting type effects.

Finally, adding other natural phenomena to this renderer would be a
wonderful way to extend this paper. Mirages are very neat, but there
are other things that could be added. Fog and global illumination
are some phenomena that could be added, but there is certainly are
many more that could be implemented.

Figure 4: A 2 layer mirage box on top of a ball model.

6 Acknowledgments

The author would like to thank Dr. Marc Olano for his paper com-
ments, as they helped me greatly. Also, thanks go to the author’s
CMSC 635 classmates, as their suggestions helped in more rapidly
develop and test my application.

References

BERGER, M., TROUT, T., AND LEVIT, N. 1990. Ray tracing
mirages. 36-41.

CoOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Dis-
tributed ray tracing. In SSIGGRAPH ’84: Proceedings of the 11th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 137-145.

DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective
shadow maps. In SI3D ’05: Proceedings of the 2005 symposium
on Interactive 3D graphics and games, ACM Press, New York,
NY, USA, 203-231.

HAINES, E., 1996. Neutral file format.

KAJIYA, J. T., AND HERZEN, B. P. V. 1984. Ray tracing volume
densities. In SIGGRAPH ’84: Proceedings of the 11th annual
conference on Computer graphics and interactive techniques,
ACM Press, New York, NY, USA, 165-174.

VEACH, E., AND GUIBAS, L. J. 1997. Metropolis light trans-
port. In SIGGRAPH ’'97: Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
65-76.

WHITTED, T. 1980. An improved illumination model for shaded
display. Commun. ACM 23, 6, 343-349.

WIKIPEDIA, 2007. Mirage — Wikipedia, the free encyclopedia,
May. [Online; accessed 07-May-2007].

YOUNG, A., 2006. Mirages and green flashes. [Online, accessed
07-May-2007].



Figure 5: Translucency and depth of field..



