Scene-Based Geometry Synthesis

Jonathan Bronson*
UMBC

Abstract

Digital artists have increasingly been required to design and create
ever larger and more detailed virtual environments. The purpose
of these environments ranges mostly between cinema and game de-
velopment, but the challenges are the same in both; to create large
amounts of detail in an unrealistically short timescale. Fractals are
one instance of a tool being utilized to speed up production time,
mostly for landscape generation.

We present an alternative approach to generating unique and believ-
able large-scale outdoor scenes. Through the utilization of texture
synthesis and geometry synthesis techniques, it is possible to syn-
thesize large natural environments based on a small predefined sub-
region. In this manner, an artist is only required to create a small
portion of the product, and the algorithm will generate a full-scale
scene with the same properties as the example. If built robustly
enough, this system could dramatically improve production time of
immersive movies and video games.

Keywords: texture synthesis, geometry synthesis, scene model-
ing, terrain generation, scene generation

1 Introduction

With the increase in users of high end graphics systems, the de-
mand for ever large and more complex virtual environments also
grows. Similarly, box office hits are increasingly taking advantage
of graphics systems to place viewers into imaginary worlds of in-
creasing beauty and realism. Both of these products are under the
real-world time constraints for their development cycles. There are
a fixed number of artists with a fixed amount of time to work. Al-
lowing artists to focus on the style and important detail that is nec-
essary will ultimately result in better movies and games.

The field of terrain generation has grown considerably, and is now
quite believable in most aspects. One of key areas which is lack-
ing however is the relation between these maps and the elements
within them. Artists are forced to either hand place rocks, plants,
and structures, or use some large scale randomized algorithm. The
first choice is not only tedious but sometimes impossible due to
sheer magnitude. The second choice works well for features with
a simple distribution, such as flower fields, but fail miserably when
complex environments arise. In such models, there is no way to
account for flowers which might only grow on the edge of water.
Similarly, there may be combinations of plants which grow well
together and poorly apart.

*jonbronson@umbc.edu

We present a system which allows artists the ability to specify the
relation between all models in a scene. Varying sizes of input can be
used depending on the complexity of the environment being gener-
ated. For example, a large input area with minimal features would
be used to generate regions of low and high density. Conversely,
a small area would synthesize a more uniformly dense region of
elements.

One could argue that an algorithm could also produce specific pat-
terns of objects on a large scale. While this may sometimes be true,
the relationship between a function and the output is not as clear as
a picture. An artist cannot be expected to anticipate the outcome
of a complex fractal equation before rendering it. By basing our
generation off input scene geometry, we can create our new scenes
based on human intuition. Artists can create the exact atmosphere
they wish, and then carry it through to a much larger scale. The
same cannot be said for other approaches.

Patch based synthesis techniques in particular lend themselves very
well to this task, because they are particularly good at maintain-
ing structure within the image. Therefore, the majority of work in
this approach is in defining a clear mapping of the 3D scene, to a
reasonable texture and back. Our work focuses on what is a good
mapping, and what type of environments we could synthesize. The
transition from 3D to 2D could be made trivially easy, however, if
we do not take extra effort to define this direction properly, we may
leave ourselves with too little information to accurately reconstruct
the 3D equivalent.

2 Related Work

The methods used in this paper derive from traditional texture syn-
thesis techniques. After a review of a range of synthesis techniques,
it became clear that a patch-based method would be the most ap-
propriate. These methods tend to be much faster than per-pixel ap-
proaches [Efros and Freeman 2001; Praun et al. 2000], and it is not
vital to our goal that the result be as visually coherent and new. As
long as the extraction algorithm is able to successfully reconstruct
the output geometry, some disparity is acceptable. These patch-
based methods are also particularly good at capturing structures,
which is something that we absolutely want in our system.

In order for some scenes to be fully synthesized, it will be necessary
to synthesize geometry appropriately. There have been two main
approaches to this. One of them is to define some input texture
which you wish to permute the surface of a model [Lai et al. 2005;
Bhat et al. 2004]. This approach would be good if landscape is
already defined, but the artist wants specific control in key areas.
An alternative method is to take input geometry and interconnect it
in shellspace over some surface [Zhou et al. 2006]. This approach
will be more useful to us if we wish to generate new landscape
ourselves.

There has been some very interesting work in giving artists more
control over how synthesis proceeds, and this could lend itself well
to the toolset. [Hertzmann et al. 2001] allow the user to paint key
areas in what will become the new image, to direct the flow of the
texture synthesis. This would be ideal for the type of work artists
will use this for.

3 Approach

In order for us to take advantage of texture synthesis, we need to
represent our input in the form of a texture. This is an interesting
switch since our desire is to begin with some 3D modeled scene.
Therefore, our first major task is to define a mapping into 2D space.
We will test three different methods: Predefined Glyph Mapping,
Generative Glyph Mapping, and Projection Rendering.

The first method, Predefined Glyph Mapping, will define a clear
1-to-1 mapping for each model and glyph. These objects will be
centered in coordinates of the texture corresponding to coordinates
of the object in the input scene. This is a very limited approach
but its simplicity will make it a good benchmark. If we take this
one step farther, we can generate a composite glyph to store more
information. An N by N square glyph can store N2 parameters if
we store them naively. We could increase the capacity three (four)
fold by exploiting RGB(A). In fact, we need not limit ourselves at
all if our implementation is stand alone. Since we never lay eyes
on this intermediate image, it need not be a legitimate image file.
We may define an arbitrary number of fields, and store an arbitrary
amount of data. However, by spreading the data across multiple
pixels we provide the chance that features from different objects
will cross-pollinate their attributes.

The final method, Projection Rendering, will render a top down
orthographic view of the input scene into a texture. This approach
will offer the most informationally detailed view of the scene. At
the same time, it is also the most problematic. Without a uniform
glyph shape we no longer have a clear origin point for the object.
We also no longer have a clear way to scan the glyph to read data. In
this type of mapping, it appears necessary to repeat all data across
all pixels of an object. Unfortunately, this will remove the chance
of crossing object attributes. For all three approaches, a separate
texture will be used to represent the ground. Height map data is
inherently different in that it is continuous across a scene block.

Once a suitable input texture has been created we can proceed with
a chosen synthesis method. The result of this need not be beautiful,
but must allow our system to reconstruct from each glyph certain
key information. We must be able to detect at a minimum, model
id and possibly directional orientation. Once such information is
determined, we can reconstruct the final scene in several manners.

For terrain, we can use the heightmap data to reconstruct our terrain
into whichever format we wish to render. For the purposes of this
project, we will keep it in heightmap form. For geometry, we can
either use orientation given by the synthesis, or randomly perturb it.
The elements of the scene will dictate which is more appropriate.
To get the variety of models we truly want, some of our parameters
can be scaling and skewing factors. It might also be desirable to
define groups of objects, and randomly pick between a subset. This
will offer more variety across large areas such as forests. In this
way, an artist does not have to place all models of a particular tree
in their sample input to guarantee variety.

3.1 Seed Scene Creation

The method used to create the seed sample scene is irrelevant to this
algorithm. We will restrict our scenes to the simple case for the sake
of clarity. That is, input scenes will be in the format of an NxN area
of arbitrary height. The texture which will represent this scene will
be proportional in size. For our implementation, we define a sample
as a simple scene graph. Locations and orientations of all models
within the sample are stored numerically. A heightmap texture is
stored to represent ground detail if needed.

To generate the sample texture from this scene, we iterate through

- - B]
O
" oar [
]] " .
m® =
. B
| | . | | .
@ ()

Figure 1: Image (a) is an example of a 1-to-1 object model map-
ping. No extra information is stored other than ID. Image (b) is an
example of a Generative Mapping. Each Glyph within the texture
contains multiple pixels of varying data.

all models within the scene graph. Horizontal coordinates relative
to the scene block are used to place the corresponding glyph in the
texture relative to the size of the texture. The larger a glyph is to
be, the larger the sample texture will need to be to ensure no two
glyphs overlap and obscure one another.

Figure 1 shows sample input textures for the first two glyph map-
pings. Texture (a) is a 1-to-1 Mapping, where color of the glyph
represents model ID. Texture (b) is a Generative Mapping, where
each glyph contains a number of pixels, each of which stores some
parameters for the object.

3.2 Scene Synthesis

Once we have transformed our sample scene into an input texture,
normal Texture Synthesis may proceed in its standard way. We im-
plemented both pixel-based and patch-based techniques to compare
their success under our restrictions. The two approaches have var-
ious strengths and weaknesses which we will not going into unless
they apply directly to our method.

The advantage of doing a pixel-based approach is in the accuracy
of any given pixel. It would seem that this would provide the
smoothest transition across an image. However, we are forced not
to implement an Image pyramid. The reason for this is that any
change to color information will ultimately change the data stored
and may misrepresent the reconstruction. This restriction means
that we must capture all image structure using neighborhoods. This
also means neighborhoods must become extremely large and our
synthesizing time quickly becomes unwieldy. The whole point of
this approach is to generate extremely large environments, and we
see a pixel-based approach would be unreasonably slow.

A patch-based method will also capture large scale structures while
still providing us with the speed we desire. The remainder of the
scene synthesis consists of observations and results taken from per-
forming a patch-based synthesis on the mapped glyphs. We define
the output size of the synthesis to be proportional to the 3D area we
wish to synthesize our geometry over. While there is no restriction
on the output size, computational time will increase linearly with
respect to each dimension.

3.2.1 Full Scene Reconstruction

Once the final scene texture has been synthesized, we can begin to
see the strengths and weaknesses of each glyph mapping. All three

O
= =

Figure 2: During patch-based texture synthesis no guarantee can be
made that the best chosen patch does not intersect and chop off a
piece of a multipixel glyph. The problem is less severe for sparse
scenes and unavoidable for dense scenes. The glyph circled in red
will be cut and not appear in whole in the synthesized image.

mappings will have a similar structure for reconstructing the out-
put scene. The synthesized texture will be read in scanline order.
Whenever a feature is detected, (by color variance), it will be exam-
ined and the appropriate geometry will be placed into the new scene
graph. The manner in which the data is extracted from the glyph is
what differs between these methods. A 1-to-1 Mapping needs only
examine one pixel, at which point it can tag the rest as already re-
constructed. The Generative Map must examine each pixel within
the glyph, in scan-line order relative to the glyph. Once all param-
eters of the object are known, it too can place the correct model
into the scenegraph with the appropriate properties. The Projection
Mapping will read a single pixel, similar to the 1-to-1 mapping, but
rasterization might make it difficult to tell if there are more than one
object. A closing convolution in the original input texture might al-
leviate this problem.

While the 1-to-1 mapping seems to fair off well no matter which
synthesis method is used, the Generative Mapping is shown to be
problematic. The problem comes in several forms but is all based on
the same principal. In order for our reconstruction to be successful,
we must be able to read the entire glyph’s properties. Unfortunately,
the patch-based sampling cannot guarantee these glyphs stay whole.
The first issue comes up when we pick a close match patch from the
input image. The best match is only computed for the overlapping
portions of the patch. This match may cause the chosen patch to cut
off glyphs on the right and bottom sides, as shown in Figure 2.

The second scenario which hurts these multipixel glyphs occurs af-
ter the best patch is chosen. A best-cut is performed to provide as
seamless a transition from patch to the next. This cut path is chosen
by pixels which differ by the least amount of error. This means that
even if we have perfectly overlapping glyphs, we will not have a
cross pollination between them. The best cut will stay on the back-
ground surface and avoid any cut at all, choosing all of one glyph.
Furthermore, this overlap region puts a restriction on the size of
these glyphs. As Figure 3 shows, if a glyph is equal to or wider
than the size of the overlap, it will be cut in half no matter what.
This only works in our favor if we happen to have perfectly over-
lapping glyphs, both of which are equal to the overlap size. This is
a very unlikely event, and we can see that the multipixel glyph is
not a strong candidate for use in scene synthesis.

Figure 3: This figure shows how the glyph width can be problem-
atic during path-based texture synthesis. The grey areas are those
not overlapped, while the colored regions are those which exist be-
fore an overlap occurs. The glyph circled in red takes up the entire
overlap region and is guaranteed to be cut by the “best cut” of the
patch-based synthesis.

Figure 4: The image shows the output of a patch-based synthesis on
the sample input provided from Figure-1(a). The implementation is
not complete but it is clear that structure is being maintained.

4 Results

Preliminary results so far are encouraging. At first attempt pixel-
based synthesis was used to generate new output textures. An Im-
age Pyramid was not used so as to not change any of the data. How-
ever, without this tool to capture large structures, extremely large
neighborhoods are needed to synthesize a good output. Since the
original Wei and Levoy [2000] paper used both an Image Pyramid
and clustering techniques to provide fast synthesis, it was apparent
that this method should be abandoned.

An attempt using a patch-based synthesis worked much better. It
also revealed that the multipixel generative glyph is not fit for use
in this method, though it is still clear from figure 4 that structure
is being maintained. The 1-to-1 pixel glyphs suffer from no such
problem. Figure 5 shows its success in texture synthesis.

The results when using this 1-to-1 mapping with geometry data was
very encouraging Figure 6 shows an example patch of forest given
as input. The result is a much larger synthesized forest across the
surrounded landscape. The overall structure of the patch is main-
tained by the synthesis and the extension is seamless. By providing
more data to the glyphs we can achieve better results such as color
variations among trees. Figure 7 shows a different sample scene
generated with varying degrees of colors on the trees.

The two examples given so far of a relatively moderate degree of
density. We start to see very different effects as we go in either di-
rection. As one might expect, a less dense sample patch leads to
more repetative synthesis. There is simply not enough variation for
the patch matching to go by. We must artificially add more ran-

Figure 5: The image shows the success of a single pixel represen-
tation of a scene. In this naive mapping, each color corresponds to
different input model, with no additional information stored. An
arbitrary amount of information can be placed in a single pixel by
extending the RGBA channels to N-dimensions.

Figure 6: The image on the left is the input patch which would be
provided by an artist. This patch is meant to be an accurate descrip-
tion of what an arbitrary piece of the scene would look like. To the
right is a synthesized extension of this patch across the surrounding
landscape.

Figure 7: The scene above was synthesized from a sample patch
packed into a 64x64 pixel texture. Color variations are added to
provide improved visual impact. The structure of this forest is also
clearly different than the one synthesized in figure 6

Figure 8: The sample input provided is a very dense forest area.
We pack them as tightly as possible into a texture map and gener-
ate a synthesized texture map. The texture output very accurately
portrays the characteristics of the input.

Figure 9: The synthesized texture from Figure 8 is used to generate
the scene shown. The discrete distances of the pixels are clearly
visible in the placement of the tree bases.

domness to to counteract this affect. What occurs when we travel
in the other direction is not so obvious. The precision of the mea-
sure of relationship between models in the scene is defined by the
scale of the texture and the disceteness of the pixels that the tex-
ture is comprised of. In order to capture the idea of open fields
within forests, we provide an input sample with as high density as
possible, to ensure the patch selection properly handles these open
areas. The result of this texture synthesis is shown in Figure 8. As
we follow this reconstruction through to the geometry stage, we see
in Figure 9 that the same structure is visible. However, it is very
obvious that our trees are now on a gridlike pattern formed by the
pixels. To avoid such scenarios, we can either enforce the use of
larger textures to capture finer granularity, or use composite mod-
els. An example of the use of composite models is shown in figure
10. Here we again have a completely dense image except it is no
longer apparent from the view of the scene.

5 Conclusion & Future Work

As we have shown through the work presented, there is clearly a
place for such synthesized scenes. The use of texture synthesis as

Figure 10: In this image a composite model is used to counteract
the discrete pixel sampling issue. In this image there is no visible
pattern of model placement.

a means will require more extensive research. The main reason the
synthesis behaves so unexpectedly is we are trying to map a discrete
quantity to a continuous texture, and then map that continuous tex-
ture back onto a discrete sampling of pixels. Through this layered
process we lose a lot of information and a lot of flexibility.

If this technique can be implemented fast enough it would be an
excellent tool to use in the background of a 3D editing tool. It
could behave like a copy/paste tool in which an input region is
highlighted, and then “pasted” over a larger output area. Except, in
this case, the pasted output would be the synthesized scene. Future
work includes the investigation of this technique with overlapping
geometry as well as the further improvement of the structure cap-
turing. It seems evident from the results so far that the approach of
standard texture synthesis does not exactly match the goals of this
scene synthesis.

References

BHAT, P., INGRAM, S., AND TURK, G. 2004. Geometric texture
synthesis by example. In ”SGP ’04: Proceedings of the 2004
Eurographics/ACM SIGGRAPH Symposium on Geometry Pro-
cessing”, ACM Press, New York, NY, USA, 41-44.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for
texture synthesis and transfer. In ’SIGGRAPH "01: Proceedings
of the 28th Annual Conference on Computer Graphics and Inter-
active Techniques™, ACM Press, New York, NY, USA, 341-346.

HERTZMANN, A., JAcOBS, C. E., OLIVER, N., CURLESS, B.,
AND SALESIN, D. H. 2001. Image analogies. In ”SIGGRAPH
’01: Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques”, ACM Press, New York,
NY, USA, 327-340.

LAl, Y.-K., HUA, S.-M., Gu, X., AND MARTIN, R. R. 2005.
Geometric texture synthesis and transfer via geometry images.
In ’SPM ’05: Proceedings of the 2005 ACM symposium on Solid
and Physical Modeling™, ACM Press, New York, NY, USA, 15—
26.

PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2000. Lapped
textures. In SIGGRAPH ’00: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques,
ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 465-470.

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis using
tree-structured vector quantization. In ”SIGGRAPH ’00: Pro-
ceedings of the 27th Annual Conference on Computer Graphics
and Interactive Techniques™”, ACM Press/Addison-Wesley Pub-
lishing Co., New York, NY, USA, 479-488.

ZHou, K., HUANG, X., WANG, X., TONG, Y., DESBRUN, M.,
Guo, B., AND SHUM”, H.-Y. 2006. "mesh quilting for geo-
metric texture synthesis. In SIGGRAPH ’06: ACM SIGGRAPH
2006 Papers, ACM Press, New York, NY, USA, 690-697.

