
Real-Time Rendering of Fast Moving Water

Joshua Glassman∗

University of Maryland, Baltimore County

Abstract

In this paper we present a method for modeling and rendering fast
moving bodies of water such as rivers in real-time. Rather than
use a static polygonal surface, the water surface is represented as
a height map on the GPU and is rendered using the recent GPU-
based height map rendering algorithms. A simple ray tracer allows
fast computation of reflections and refractions. It runs at high frame
rates due to effective use of modern graphics hardware, and is in-
tended for use in real-time applications such as video games.

CR Categories: D.1.7 [Software]: Programming Techniques—
Visual Programming

Keywords: real-time, water

1 Introduction

Water in real-time computer graphics has been lacking in realism
for a long time. Until recently, there were very few games including
water surfaces that were anything more than a static surface, with
a lot of dynamic texturing. This caused shorelines to appear very
unrealistic since the water-to-land transition were static. In addition
the water surface had a bizarre appearance when viewed at sharp
angles due to the flat representation. Recently, a few games have
begun to use deformed surfaces to represent water. A recent paper
by Jason L. Mitchell [2004] presents a solution for large bodies of
water such as oceans and lakes, but does not solve the problem for
fast moving bodies of water such as rivers. We present an extension
to Mitchell’s solution to account for the vast differences between
the appearances of fast moving and large bodies of water.

Our primary contribution is the synthesis and rendering steps used
to model fast moving bodies of water in real-time. Our approach
allows effects such as reflection and refraction as well as depth ef-
fects and directional motion of water, whether through a straight
pathway or around a curve.

We will begin by reviewing previous work in the field in section 2,
mainly work done in rendering techniques for large bodies of water.
After reviewing the various types of techniques and how they relate
to ours, we will describe our algorithms in section 3. In section 4,
we will present our results and the performance of our system, as
well as discuss some possible extensions. We will then conclude
with a brief summary and a discussion of possible future directions
for this research.

∗e-mail: joshums@gmail.com

2 Related Work

Previous work in water synthesis and rendering for computer graph-
ics can be divided into two methods: simulation and approximation
approaches. Additionally, parts of our algorithm rely on noise for
variety.

2.1 Simulation

In Fournier and Reeves [1986], a simple model was introduced for
the modeling and rendering of ocean waves. The technique in-
volved a parametric representation of ocean surfaces, to the extent
of modeling interactions with the ocean floor to create curling and
breaking, spray, and foam effects.

In Tessendorf [2004] an introduction to the fundamental principles
of ocean wave simulation is presented. These techniques are widely
used today for off-line rendering, but are not nearly fast enough for
real-time applications nor do they consider rendering of fast moving
waterways.

General fluid simulation is also a prevalent field of research. Stam
introduced a stable model capable of producing complex fluid-like
flows in real-time [Stam 1999]. This method made use of classic
Navier-Stokes fluid transport formulas with a unique method of rep-
resentation and solving, optimized for speed over realism. Enright
et al. presented a photorealistic approach capable of modeling com-
plex effects such as water being poured into a glass by using sets
of positive and negative particles to model the outside and inside of
water surfaces [Enright et al. 2002]. Carlson et al. focused on an a
system for animating the interplay between existing rigid body and
fluid simulations [Carlson et al. 2004]. The system used two-way
coupling methods to generate realistic movements for both the fluid
and the rigid bodies.

2.2 Approximation

In Hinsinger et al. [2002] was introduced a real-time algorithm for
ocean animation, but did not include Fresnel effects nor was the
system fast enough for intensive applications such as game engines.

Mitchell animated a Fourier domain spectrum of deep-water ocean
waves, then transforming the spectrum into a realistic height map
of ocean water via IFFT on the GPU [Mitchell 2004]. A low fre-
quency height map was used to displace the geometry, while low
and high frequency normal maps were combined for use in shading.
The methods presented allow for compositing of other waveforms
such as wakes caused by objects interacting with the water, and for
damping of higher frequencies to model the effect of depth varia-
tion or the presence of plant matter. Our approach uses many of
these techniques, but modifies the algorithms such that they apply
to shallow fast moving bodies of water.

Most recently, Hu et al. represented wave geometry view-
dependently with a dynamic displacement map with surface detail
described by a dynamic bump map [Hu et al. 2006]. The main con-
tributions of this work were the efficient handling of distant geome-
try by only using a bump map for distant waves, and precomputing
a large amount of the information required for rendering. These
contributions allow frame rates in a game engine of over 100 on a
GeForce 3 graphics card. Our approach makes use of the ’bump



Figure 1: Simple Geometry.

map only’ approach for distant water surfaces, but the tiling meth-
ods are highly modified due to the shape dependent motion of fast
moving waterways.

2.3 Noise

Ken Perlin described a method for calculating deterministic
noise [Perlin 1985]. Later, this method was revisited and improved
in a second paper [Perlin 2002]. A GPU-accelerated version of this
algorithm is used to add some variety to various parts of our algo-
rithm.

3 Implementation

In order to have a dynamic water system and to avoid using overly
large quantities of graphics memory for texture storage, height
fields for the water surface are generated at run-time. In order to
do so, we compute a frequency-space representation of the water
surface and generate a height field from that via the Inverse Fast
Fourier Transform (IFFT), as described in Mitchell [2004]. The
generation algorithms used in our method are modified from those
presented by Mitchell to account for the unique appearance of fast
moving water.

To model view dependent fluctuations of the water surface we dis-
place the surface using a low frequency height map. Lighting cal-
culations are done though a combination of low and high frequency
normal maps, using the techniques described in Mitchell [2004].
To keep the algorithm efficient enough for intensive applications,
distant water surfaces are not displaced, and instead are only bump
mapped as in the approach from Hu et al. [2006].

3.1 Texture Mapping

To account for the highly noticeable directed flow of fast moving
water, the textures are squished down so that the water peaks are
longer going downstream than across. Additionally, the texture
is bent so that the directed flows appear to bend as the waterway
bends.

3.2 Interactivity

The most challenging aspect of modeling fast moving water is
interactions with the shorelines and other objects. In order to
model splashing effects, we use a simple particle system for water
droplets. Since the drops move too fast for it to be worth the extra
computations, reflection and refraction is skipped and a more sim-
ple approach is used for rendering. We instead render the particles
as partially transparent billboards, always facing the viewer.

Ripples and wakes are composited onto the water surface us-
ing additional height map textures, similar to those used in
Mitchell [2004], and additional textures are used to show interac-
tions around stationary objects in the water surface. However, since
the water is moving quickly, the composited textures need to be
distorted over time in the direction of water flow. For this effect
hardware accelerated Perlin noise is used to both distort and deteri-
orate the effects of the ripples.

3.3 Rendering

In order to render the water surface with correct lighting, we first
need to generate a valid normal map. The normal map is approx-
imated by calculating the differences between adjacent height val-
ues at each point in the height map, and taking the cross product of
those differences. This produces a normal map which is locally ap-
proximated with accuracy dependent on the resolution of the height
map.

4 Results

At this point in time, we currently have a system which displaces
mesh geometry and renders with Fresnel reflection and refraction.
Each frame the system takes as input a height map, generates an ap-
proximate normal map, and uses the two in the final rendering algo-
rithm. Reflection and refraction colors are currently retrieved from
an arbitrary cube map texture, though in a dynamic environment
reflection and refraction textures could be generated each frame.
Remaining is the implementation of one of a number of fast water
height map generation algorithms, with some small modifications



Figure 2: Without Displacement.

to approximate the differences between large bodies of water and
fast moving waterways. The best method to use for this is probably
the one used by Hu et al. [2006] since the water would be moving
fast enough that it is unlikely that cyclic repetitions would be no-
ticeable, especially due to the use of noise to augment the appear-
ance at the shorelines and other interactive locations. Although this
method takes up more texture memory due to the needed storage of
several textures, the increased rendering speed is very attractive and
will allow the system to be used across more systems. However, if
this were to be used on a device with tight memory constraints such
as a console game system, the method presented by Mitchell [2004]
would likely be more appropriate.

Figure 1 shows an image resulting from a combination of all of our
techniques. This scene was rendered at xx frames per second on a
GeForce 7800 graphics card.

Figure 2 shows an image rendered using our techniques but without
displacing the original geometry. This scene was rendered at xx
frames per second on a GeForce 7800 graphics card.

5 Future Directions

We have presented an approach to synthesizing and rendering fast
moving water entirely on the graphics processor. Our approach
uses modifications of known methods to generate both low fre-
quency height maps for surface displacement and broad spectrum
normal maps for lighting calculations. This allows for compositing
of additional height maps to model the effects of objects interact-
ing with the water surface. We have also described a rendering
method which approximates the appearance of fast moving water-
ways, which includes reflection and refraction. We concluded by
demonstrating the results and performance of our system on mod-
ern graphics hardware.

While a number of papers have discussed generating physically
accurate or good approximations to the appearance of ocean wa-
ter, fast moving waterways have not been discussed. An algorithm
which generates a better representation of fast moving water would
be an excellent extension to the techniques presented here.

References

ALEX VLACHOS, J. R. I., AND OAT, C. 2002. Rippling reflective
and refractive water. In Direct3D ShaderX: Vertex and Pixel
Shader Tips and Tricks, W. Engel, Ed. Wordware, Plano, Texas.

CARLSON, M., MUCHA, P. J., AND TURK, G. 2004. Rigid fluid:
animating the interplay between rigid bodies and fluid. In SIG-
GRAPH ’04: ACM SIGGRAPH 2004 Papers, ACM Press, New
York, NY, USA, 377–384.

ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Ani-
mation and rendering of complex water surfaces. In SIGGRAPH
’02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY,
USA, 736–744.

FOURNIER, A., AND REEVES, W. T. 1986. A simple model
of ocean waves. In SIGGRAPH ’86: Proceedings of the 13th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 75–84.

GAMITO, M. N., AND MUSGRAVE, F. K. 2002. An accurate
model of wave refraction over shallow water. Computers &
Graphics 26, 2, 291–307.

HINSINGER, D., NEYRET, F., AND CANI, M.-P. 2002. Interac-
tive animation of ocean waves. In SCA ’02: Proceedings of the
2002 ACM SIGGRAPH/Eurographics symposium on Computer
animation, ACM Press, New York, NY, USA, 161–166.

HU, Y., VELHO, L., TONG, X., GUO, B., AND SHUM, H. 2006.
Realistic, real-time rendering of ocean waves: Research articles.
Comput. Animat. Virtual Worlds 17, 1, 59–67.

JOHN R. ISIDORO, A. V., AND BRENNAN, C. 2002. Rendering
ocean water. In Direct3D ShaderX: Vertex and Pixel Shader Tips
and Tricks, W. Engel, Ed. Wordware, Plano, Texas.

KIM, J., CHA, D., CHANG, B., KOO, B., AND IHM, I. 2006.
Practical animation of turbulent splashing water. In SCA ’06:
Proceedings of the 2006 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation, Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, 335–344.



KIPFER, P., SEGAL, M., AND WESTERMANN, R. 2004. Uber-
flow: a gpu-based particle engine. In HWWS ’04: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graph-
ics hardware, ACM Press, New York, NY, USA, 115–122.

LOVISCACH, J. 2003. Complex water effects at interactive frame
rates. In WSCG.

MASTIN, G. A., WATTERBERG, P. A., AND MAREDA, J. F. 1987.
Fourier synthesis of ocean scenes. IEEE Comput. Graph. Appl.
7, 3, 16–23.

MAX, N. L. 1981. Vectorized procedural models for natural ter-
rain: Waves and islands in the sunset. In SIGGRAPH ’81: Pro-
ceedings of the 8th annual conference on Computer graphics and
interactive techniques, ACM Press, New York, NY, USA, 317–
324.

MITCHELL, J. L. 2004. Real-time synthesis and rendering of ocean
water. In ATI Research Technical Report. Marlboro, MA.

MORELAND, K., AND ANGEL, E. 2003. The fft on
a gpu. In HWWS ’03: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
Eurographics Association, Aire-la-Ville, Switzerland, Switzer-
land, 112–119.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. In SCA ’03:
Proceedings of the 2003 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation, Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, 154–159.

PERLIN, K. 1985. An image synthesizer. In SIGGRAPH ’85: Pro-
ceedings of the 12th annual conference on Computer graphics
and interactive techniques, ACM Press, New York, NY, USA,
287–296.

PERLIN, K. 2002. Improving noise. In SIGGRAPH ’02: Pro-
ceedings of the 29th annual conference on Computer graphics
and interactive techniques, ACM Press, New York, NY, USA,
681–682.

PFISTER, H., ZWICKER, M., VAN BAAR, J., AND GROSS,
M. 2000. Surfels: surface elements as rendering primitives.
In SIGGRAPH ’00: Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
335–342.

PREMOZE, S., AND ASHIKHMIN, M. 2001. Rendering natural
waters. Computer Graphics Forum 20, 4, ??–??

REEVES, W. T. 1983. Particle systems–a technique for modeling
a class of fuzzy objects. ACM Trans. Graph. 2, 2, 91–108.

RUSINKIEWICZ, S., AND LEVOY, M. 2000. Qsplat: a multiresolu-
tion point rendering system for large meshes. In SIGGRAPH
’00: Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 343–352.

SCHNEIDER, J., AND WESTERMANN, R. 2001. Towards real-time
visual simulation of water surfaces. In VMV ’01: Proceedings
of the Vision Modeling and Visualization Conference 2001, Aka
GmbH, 211–218.

SELLE, A., RASMUSSEN, N., AND FEDKIW, R. 2005. A vortex
particle method for smoke, water and explosions. In SIGGRAPH
’05: ACM SIGGRAPH 2005 Papers, ACM Press, New York, NY,
USA, 910–914.

STAM, J. 1999. Stable fluids. In SIGGRAPH ’99: Proceedings
of the 26th annual conference on Computer graphics and inter-
active techniques, ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 121–128.

SU, W. Y., AND HART, J. C. 2005. A programmable particle sys-
tem framework for shape modeling. In SIGGRAPH ’05: ACM
SIGGRAPH 2005 Courses, ACM Press, New York, NY, USA,
277.

TESSENDORF, J. 2004. Simulating ocean water.

ZHU, Y., AND BRIDSON, R. 2005. Animating sand as a fluid. In
SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, ACM Press,
New York, NY, USA, 965–972.


