
Particle System with High-Level Elements

Jonathan W. Decker�
University of Maryland, Batimore County

Abstract

We present a particle system with simple mass spring elements and
propose a complete GPU implementation of the system in shader
programs. In this system, there is a large number of small meshes
we refer to as molecules. Each particle is moved independently
according to external forces that model fluid, then restoration forces
are applied onto every particle along the springs incident on it. The
end result is a large set of objects noticeably aligned with their local
flow and interacting with the environment.

Keywords: graphics hardware, particle systems, mass spring, vec-
tor fields, fluid simulation

1 Introduction

Particle systems are often used to create effects where group mo-
tion is more important than the appearance of individual objects.
However, there are many examples of phenomena where individual
objects are important as well, such as wind-tossed leaves, or schools
of fish. It is in these instants that single particles, even when drawn
as more complex primitives than point sprites, such as quads, do
not convey the subtle nature of fluid motion. A solution wouldbe
to allow multiple particles to represent a single element.

We propose a particle system where each individual element is ac-
tually a series of particles that move together as one, and can be
rendered together as complex shapes. We will refer to these parti-
cle structures as molecules. Each molecule is a simple mass spring
system that can interact with height maps and each other. We feel
that provides a large visual advantage over simple particlesys-
tems. As the molecules are deformed and restored according to
the forces acting on them, they align themselves in the direction of
these forces. Thus the pattern of movement is instantly recogniz-
able, whereas in pure particle systems with textured point sprites,
the direction of the motion cannot be discerned locally. Even when
the elements in a particle system are given angler motion, there is
then only two degrees of freedom over the look of the primitive.
However, in our system, using molecules of the appropriate com-
plexity can allow for an arbitrary level of expressiveness.

The particle system will be almost entirely implemented using
shaders, which will involve collision detention with elastic forces,
fluid motion, particle management and particle sorting for alpha
blending. An interface has been developed to allow users to apply
forces on the molecules, change the quantity of molecules inthe
system, as well as the complexity of the molecules.

The remainder of the paper is divided into the following sections:
Section 2 discuses related work, Section 3 describes the details of�e-mail: j6@umbc.edu

our implementation, Section 4 provides our results, and in Section
5 we discuss future work and the conclusions we have drawn.

2 Related Work

A particle system are used to simulate a wide variety of com-
plex phenomena not easily represented with geometry and textur-
ing, and their use for model various effects was first explored by
Reeves [Reeves 1983]. More recently particle systems have been
researched which implement all of their operations in fragment pro-
grams on the GPU, thus allowing systems to iterate over a large
number of particles [Kipfer et al. 2004] [Kolb et al. 2004].

Related to particle system are mass spring systems. A mass spring
system is one where the individual elements under consideration are
meshes that are allowed to deform. The overall shape of a meshis
maintained using restoration forces from elasticity theory, bought
into the field of graphics be research such as Terzopoulos et al.
[Terzopoulos et al. 1987]. Terzopoulos et al. concludes in their
work that the dynamic nature of this technique combines the con-
cepts of shape and motion, which is essential to our work where
molecules are meant to emphasis motion.

Just as particle systems have been implemented on the GPU, so
have mass spring systems. The Nvidia implementation of cloth
simulation, particles positions are updated according to collisions
in one pass, and then two further passes apply restoration forces
[Zeller 2005]. Cloth geometry is then repositioned using a vertex
shader and vertex texture fetch (VTF). This simulation is only of
flat meshes, but other implementations of mass spring systemon
the GPU have been created to handle 3D meshes as well as 2D
[Georgii and Westermann 2005] [Echtler 2004].

Although every molecule in our system is a mesh with elastic con-
straints, we feel it is more appropriate to describe our system as a
particle system rather than a mass spring system, since at a high
level all molecules are identical and only together do they form the
complete picture. In mass spring systems, objects can have very
different make up and the implementation must account for this
generality.

Navier-Stroke equations are useful for simulating stable fluids
[Stam 1999]. These equations have been implemented on graph-
ics hardware for a number of real-time applications such as cloud
[Harris et al. 2003] and smoke [Fedkiw et al. 2001] simulation.
These methods generate flow fields, which are discrete volumes of
vectors. To be able to determine the force acting on a particle at any
position, some type of interpolation is needed or the motionwill be
choppy.

However, even with a GPU implementation, this method is expen-
sive and yields only interactive rates for 3D fluid fields [Harris et al.
2003]. Since our goal with this research is to produce large num-
bers of high-level primitives with realistic motion at real-time rates,
we will settle for a less computationally complex approach.One
such method is to use measured or precalulated vector fields.When
used in this manner, our method can be seen as a variation of a
fluid flow visualization technique that simulations the movement of
a small quantity of visible material through a field. Telea and Wijk
present a GPU accelerated method that insertions and advects a dye
through the field [Telea and van Wijk 2003]. Similar in concept,



Kruger et al. utilize the GPU to cast millions of a particles into a
fluid flow at real-time rates [Jens Krüger and Westermann 2005].

3 Implementation

The following is an outline of the implementation section ofthe
paper. First we describe our general framework for processing po-
sitions with the GPU. Next we describe how molecules are repre-
sented and what types of external forces we have applied to them.
Then we how elasticity forces are used to restore molecule shape.

3.1 GPU Implementation

Graphics hardware is used to initialize and manipulate particle po-
sitions, as well as render them directly from texture data. Posi-
tions and velocities are stored in textured that are that arebound to
screen-aligned quads and then processed in a fragment shader. The
output is rendered to a texture that is then used as input in the next
pass. In this way, different operations can be done on the particles,
such as initialization, movement based on external forces,elastics
forces between particles in each molecule and sorting.

When position data is stored in a texture on the GPU, as we have
done in this work, there needs to be treating the texels as vertex
data. For this, Kobi et al. and Kipfer et al. use superbuffers, which
allow control over whether they represent texture data or vertex
data [Kipfer et al. 2004] [Kolb et al. 2004]. This method is spe-
cific to the OpenGL API. Another method, used by Zeller for the
nVidia GPU-accelerated cloth demo, is to use Vertex TextureFetch
(VTF), support by vertex shader 3.0 [Zeller 2005]. First, geom-
etry is defined and initialized to some arbitrary position, such as
the origin. Then this geometry is rendered with a vertex shader
that resets the positions and normals of the vertices to values stored
in textures. This method can also be used in OpenGL using the
ARB vertexshader extension [Kolb et al. 2004]. In our imple-
mentation we use VTF, but either approach would work with the
rest of our system.

Figure 3 provides a visualization of how the vertex texture fetch
works. In our system, each vertex of within each molecule is posi-
tioned at some arbitrary location, possibly the origin. Along with
its position, normal, and the texture coordinates, each vertex has an
extra set of texture coordinates where it can look up its attributes
within the position and normal textures. When the geometry is ren-
dered, it is sent through a vertex shader where each vertex sets its
position and normal to these values.

3.2 Molecule Construction

Each molecule is a set of unique vertex positions that when con-
nected with the correct geometry form some shape. Figure 1 shows
several examples, as they would be drawn by triangles. Although
there are no restricts on the shape of the molecules, increasing their
complexity greatly reduces the possible number of molecules that
can be manipulated and rendered in real-time. Furthermore,our
collision method is based on particle intersection, and nottriangle
intersection. Thus, for our tests we have chosen molecules that are
small and dense so that they do not commonly go through objects
in the scene.

Since the unique vertex list, or vertex buffer, for each molecule al-
ways as the same order, index buffering can be used to render them.
Furthermore, since every molecule in the system is the same,we
can use a single vertex buffer to store the vertices and a single in-
dex buffer to dictate what triangles will be drawn.

Each vertex stores a position, a normal and a texture coordinate.

Figure 1: Triangle layout of several molecules.

Figure 2: The springs of the example molecules shown in Figure 1.
Notice that springs need not correspond to unique triangle edges,
and can be defined according to the desired effect.

The texture coordinate is chosen at initialization and doesnot
change. The position and normal must change according to the
movement of the molecule.

The particles in our system are the vertices of the molecule con-
structs, so in the following text we use the wordsvertex andparticle
interchangeability.

3.3 External Motion

There is a wide variety of external forces that can effect theparti-
cles, depending on the desired motion. Predefined volumetric vec-
tor fields stored in 3D textures allow use to simply look up theforce
direction for a given molecule. However, this method of a look-up
into a single grid cell of the volume may not be enough if the flow
varies greatly from cell to cell. This would cause particlesto switch
direction sharply, creating unrealistic motion. To avoid this, we
should find all grid cells surrounding a particle and move it by an
average force.

Another method that is much less expensive in terms of storage is
to move a particle by a function of time and its previous position.

3.4 Elasticity Forces

Once the particles of a molecule have been moved according to
external forces, restoration forces need to be applied in order that
the molecule sustain shape. To this end we use Hooke’s law,
which maintain an initial distance between the particles within each
molecule. These springs are defined between certain pairs ofpar-



Figure 3: This diagram shows the idea behind a vertex texturefetch.
The vertices in the scene are fixed at arbitrary values (for example,
the origin). They retrieve their actual position and normalfrom
textures, using texture coordiates provided to them at intialization.

ticles (Figure 2). Every pair of particles need not have a spring
between them, and in fact the placement of springs depends onthe
desired motion of the molecule. The springs maintain their size by
applying forces to the particles they are incident on. The force on a
particle along a spring is the product of a stiffness constant and the
signed difference of the length of the spring from its initial length.
The particle is thus moved in the direction of the other particle at-
tached to this spring by the force.

We did not implement Elasticity Forces in our GPU implemen-
tation, but we propose the following method for doing so. Cur-
rently, on the CPU, we store the spring information as an array of
floating vectors. This could be easily stored in a constant buffer
within a shader. We store the spring adjacency information for each
molecule vertex as an array of indices into the spring array.These
could also be constant buffers, since there will only need tobe a
small number, given the relative small size of the molecules. In this
way we can implement any molecule shape with any spring config-
uration on the GPU.

3.5 Molecule Normals

To be able to correctly light the molecules when they rendered, we
will need to calculate their normals after the vertex positions have
been moved. This can be done simply by traversing the position
texture in a pixel shader and determining the sum of the triangle
normals adjacent to each vertex. This adjacency information can be
hard-coded into the shader or stored in constant buffers. This re-
quires some computational redundancy since the triangle normals
are computed multiple times, but this is unavoidable given the par-
allel nature of the hardware.

4 Results

The following section demonstrates our implementations with the
use of images. It is broken up into two parts, one for our cpu im-
plementation and the other for our gpu implementation. The per-
formance results given where obtained from testing done on aPC
running Windows XP with a Intel Pentium D CPU 3.2 GHz and a
NVIDIA GeForce 7900 GT/GTO.

4.1 CPU Implementation

We implemented our molecule system on the CPU with two types
of molecules, quad shaded and cross shaded (See Figures 1 and2).
In Figure 4, textured cross molecules are manipulated by a single
timestep of the wind speeds of Hurricane Bonnie. The motion of the
molecules within a volume has the same properties as the motion
dye through such fields, as has been proposed in previous workfor

Figure 4: In this image we see the cross shaped molecules in action.
Each of these molecule is made of 10 triangles, and even from astill
image some characteristics about the nature of the vector field can
be observed.

Figure 5: Each of these simple quad molecules has been positioned
on random vertices of the smallest branches of this tree model.
Then, the bottom two vertices have been set so that they cannot
move. The resulting effect is that the leaves are attached tothe tree,
but still align themselves with the direction of the wind.

visualizing volumes. However, simulating dye spreading through a
volume would not be able to reveal the overall direction of the field
in a still image. However, it is clear from both Figures 4 and 5that
our molecules system is more than capable of conveying volume
shape within still images.

We also experimented with attaching our system to fixed objects in
a scene. In Figure 5, we have initialized quad molecules to random
vertices on the smallest branches of a tree model. We then fixed
the bottom two vertices of each quad, so they they are updatedby
neither external or elasticity forces. The result are leaves fixed to
the tree at the stem, but aligned with the direction of the wind.

Given the expressiveness of our system, we wish to show that it is
viable for real-time applications. At 55 frames per second,we were
able to manipulate and render 300 of cross molecules, or 1500quad
molecules. Given the complexity of these molecules and the expres-
siveness of each, this is a fair number, although it could improve a
great deal using a efficient GPU implementation.



Figure 6: This image is from our GPU implementation. Here, ver-
tices have been positioned and lit using the positions and normals
in the textures in the upper left.

4.2 GPU Implementation

Our GPU implementation proved to perform worse then our CPU
implementation, even without the proposed elasticity forces and
normal calculation passes. 1024 particles only update at 20frames
a second, whereas they would run at an unhindered 60 frames per
second with the CPU implementation. We will explain this in the
conclusion section. This is not because of the overhead of using
vertex texture fetch. When the molecules are not being updated per
frame, thousands of molecules can be rendered to the screen at an
unhindered 60 frames a second.

5 Conclusions and Future Work

Given the poor performance of our GPU implementation in com-
parison with our CPU implementation, it is clear our approach is
inefficient. We determined after inspection that the reasonfor the
loss in performance is that our implementation is not handling the
textures efficiently. Instead of rendering using textures on the GPU
and rendering to textures on the GPU, we are sending and receiving
texture data across the bus several times each frame. In future work
we would like to correct this implementation so that texturedata
are left on the GPU after it is first initialized, and manipulated only
indirectly by the CPU. After we have done this we hope to achieve
the performance gains from previous GPU accelerated work inthis
field.

We feel that this paper is merely proof of concept. We wish to ex-
tend it in order to create an advanced molecule system that could
be used within larger systems without hindering them. Once we
have improved the efficiency of our GPU implementation, exam-
ples such as the one shown in Figure 5 will be far more impressive,
since many more leaves are required to cover a tree than our CPU
implementation can handle. We would also like to use more com-
plex molecules for the leaves which will be more expressive,and
implement more algorithms for conveying wind motion. The re-
sults in the figure to do not animate in a convincing way since the
vector field used has fixed forces at each cell. Using noise we would
achieve some of the complexity that one would normally see inthe
subtle motion of leaves on a tree. We could also explore some lo-
cally evaluated equation methods, such as Fournier and Reeves have
used to simulate realistic ocean waves [Fournier and Reeves1986].
Given a depth value at each vertex, we can determine the position of
that vertex as part of a wave. This has been used in cloth simulation

and could also be utilized in simulating wind.

Furthermore, we would like to implement collision responseinto
our application. This could include collision with terrainand
fixed objects using depth maps, as well as self collisions between
molecules and triangles within molecules. Should featureswould
further cement our system as part of a virtual environment, where
the individual molecules interact with the scene.

6 Acknowledgments

We would like to thank Alark Joshi for his support and providing
us with the Hurricane Bonnie data.

References

ECHTLER, F. 2004.Efficient Realization of Mass-Spring Systems
on Graphics Hardware. PhD thesis, University of Munchen.

FEDKIW, R., STAM , J., AND JENSEN, H. W. 2001. Visual sim-
ulation of smoke. InSIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 15–22.

FOURNIER, A., AND REEVES, W. T. 1986. A simple model
of ocean waves. InSIGGRAPH ’86: Proceedings of the 13th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 75–84.

GEORGII, J.,AND WESTERMANN, R. 2005. Mass-spring systems
on the gpu.Simulation Modelling Practice and Theory 13, 693–
702.

HARRIS, M. J., BAXTER, W. V., SCHEUERMANN, T., AND
LASTRA, A. 2003. Simulation of cloud dynamics on graph-
ics hardware. InHWWS ’03: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
Eurographics Association, Aire-la-Ville, Switzerland, Switzer-
land, 92–101.

HARRIS, M. 2004. GPU Gems: Programming Techinques, Tips,
and Tricks for Real-Time Graphics. Addison-Wesley Profes-
sional, ch. 38, 637–665.

JENS KRÜGER, PETER K IPFER, P. K., AND WESTERMANN, R.
2005. A particle system for interactive visualization of 3dflows.
IEEE Trans. Visualization and Computer Graphics 11, 6, 744–
756.

K IPFER, P., SEGAL, M., AND WESTERMANN, R. 2004. Uber-
flow: a gpu-based particle engine. InHWWS ’04: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graph-
ics hardware, ACM Press, New York, NY, USA, 115–122.

KOLB, A., LATTA , L., AND REZK-SALAMA , C. 2004. Hardware-
based simulation and collision detection for large particle
systems. InHWWS ’04: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
ACM Press, New York, NY, USA, 123–131.

LANDER, J. 1998. The ocean spray in your face.Game Developer
5, 7 (July), 11–16.

REEVES, W. T. 1983. Particle systems - a technique for modeling
a class of fuzzy objects. InSIGGRAPH ’83: Proceedings of the
10th annual conference on Computer graphics and interactive
techniques, ACM Press, New York, NY, USA, 359–375.



STAM , J. 1999. Stable fluids. InSIGGRAPH ’99: Proceedings
of the 26th annual conference on Computer graphics and inter-
active techniques, ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 121–128.

TELEA, A., AND VAN WIJK, J. J. 2003. 3d ibfv: Hardware-
accelerated 3d flow visualization. InVIS ’03: Proceedings of the
14th IEEE Visualization 2003 (VIS’03), IEEE Computer Society,
Washington, DC, USA, 31.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K.
1987. Elastically deformable models. InSIGGRAPH ’87: Pro-
ceedings of the 14th annual conference on Computer graphics
and interactive techniques, ACM Press, New York, NY, USA,
205–214.

ZELLER, C., 2005. Nvidia sdk white paper : Cloth.


