Particle System with High-Level Elements

Jonathan W. Deckér
University of Maryland, Batimore County

Abstract

We present a particle system with simple mass spring elenaewt
propose a complete GPU implementation of the system in shade
programs. In this system, there is a large number of smalheges
we refer to as molecules. Each particle is moved indepelydent
according to external forces that model fluid, then resimmdorces

are applied onto every particle along the springs inciderit.orhe

end resultis a large set of objects noticeably aligned vaighirocal

flow and interacting with the environment.

Keywords: graphics hardware, particle systems, mass spring, vec-
tor fields, fluid simulation

1 Introduction

Particle systems are often used to create effects where gnau
tion is more important than the appearance of individuakctsj.
However, there are many examples of phenomena where individ
objects are important as well, such as wind-tossed leaveshools
of fish. It is in these instants that single particles, eveernviirawn
as more complex primitives than point sprites, such as quials
not convey the subtle nature of fluid motion. A solution wohtl
to allow multiple particles to represent a single element.

We propose a particle system where each individual elerseat-i
tually a series of particles that move together as one, ancbea
rendered together as complex shapes. We will refer to thexse p
cle structures as molecules. Each molecule is a simple masgs
system that can interact with height maps and each other.e@le f
that provides a large visual advantage over simple partigie
tems. As the molecules are deformed and restored according t
the forces acting on them, they align themselves in the titine of
these forces. Thus the pattern of movement is instantlygréze
able, whereas in pure particle systems with textured pqintes,
the direction of the motion cannot be discerned locally.rEwhen
the elements in a particle system are given angler moti@netls
then only two degrees of freedom over the look of the priraitiv
However, in our system, using molecules of the appropriate-c
plexity can allow for an arbitrary level of expressiveness.

The particle system will be almost entirely implementedngsi
shaders, which will involve collision detention with elasforces,
fluid motion, particle management and particle sorting fipha
blending. An interface has been developed to allow userpyitya
forces on the molecules, change the quantity of moleculeken
system, as well as the complexity of the molecules.

The remainder of the paper is divided into the following set:
Section 2 discuses related work, Section 3 describes tladslef

*e-mail: je@umbc.edu

our implementation, Section 4 provides our results, andeictiSn
5 we discuss future work and the conclusions we have drawn.

2 Related Work

A particle system are used to simulate a wide variety of com-
plex phenomena not easily represented with geometry anariex
ing, and their use for model various effects was first expldrg
Reeves [Reeves 1983]. More recently particle systems hese b
researched which implement all of their operations in fragtipro-
grams on the GPU, thus allowing systems to iterate over & larg
number of particles [Kipfer et al. 2004] [Kolb et al. 2004].

Related to particle system are mass spring systems. A mesg sp
system is one where the individual elements under congiderare
meshes that are allowed to deform. The overall shape of a mesh
maintained using restoration forces from elasticity tigebought
into the field of graphics be research such as Terzopoulost et a
[Terzopoulos et al. 1987]. Terzopoulos et al. concludesheairt
work that the dynamic nature of this technique combines tre c
cepts of shape and motion, which is essential to our work eher
molecules are meant to emphasis motion.

Just as particle systems have been implemented on the GPU, so
have mass spring systems. The Nvidia implementation ohclot
simulation, particles positions are updated accordingotistons

in one pass, and then two further passes apply restoraticaso
[Zeller 2005]. Cloth geometry is then repositioned usingeaex
shader and vertex texture fetch (VTF). This simulation ity af

flat meshes, but other implementations of mass spring system
the GPU have been created to handle 3D meshes as well as 2D
[Georgii and Westermann 2005] [Echtler 2004].

Although every molecule in our system is a mesh with elagiic ¢
straints, we feel it is more appropriate to describe ouresysas a
particle system rather than a mass spring system, since igha h
level all molecules are identical and only together do tlwynfthe
complete picture. In mass spring systems, objects can heye v
different make up and the implementation must account fix th
generality.

Navier-Stroke equations are useful for simulating stabledsl
[Stam 1999]. These equations have been implemented on-graph
ics hardware for a number of real-time applications suchl@asdc
[Harris et al. 2003] and smoke [Fedkiw et al. 2001] simulatio
These methods generate flow fields, which are discrete valaie
vectors. To be able to determine the force acting on a padichny
position, some type of interpolation is needed or the matidrbe

choppy.

However, even with a GPU implementation, this method is expe
sive and yields only interactive rates for 3D fluid fields [Hset al.
2003]. Since our goal with this research is to produce larga-n
bers of high-level primitives with realistic motion at reahe rates,
we will settle for a less computationally complex approa®@ne
such method is to use measured or precalulated vector fidlden
used in this manner, our method can be seen as a variation of a
fluid flow visualization technique that simulations the mmest of

a small quantity of visible material through a field. Teled &¥ijk
present a GPU accelerated method that insertions and advdge
through the field [Telea and van Wijk 2003]. Similar in congep

Kruger et al. utilize the GPU to cast millions of a particlesia
fluid flow at real-time rates [Jens Kriiger and WestermanrbR00

3 Implementation

The following is an outline of the implementation sectiontoé
paper. First we describe our general framework for prongsso-
sitions with the GPU. Next we describe how molecules areerepr
sented and what types of external forces we have applieceto.th
Then we how elasticity forces are used to restore molecualpesh

3.1 GPU Implementation

Graphics hardware is used to initialize and manipulatdgeano-
sitions, as well as render them directly from texture datasiP
tions and velocities are stored in textured that are thabaved to
screen-aligned quads and then processed in a fragmentshade
output is rendered to a texture that is then used as inputinéht
pass. In this way, different operations can be done on thec|es;
such as initialization, movement based on external forelestics
forces between particles in each molecule and sorting.

Figure 1: Triangle layout of several molecules.

When position data is stored in a texture on the GPU, as we have
done in this work, there needs to be treating the texels dasxwer
data. For this, Kobi et al. and Kipfer et al. use superbuffetsich
allow control over whether they represent texture data otexe
data [Kipfer et al. 2004] [Kolb et al. 2004]. This method issp
cific to the OpenGL API. Another method, used by Zeller for the
nVidia GPU-accelerated cloth demo, is to use Vertex TexXaateh
(VTF), support by vertex shader 3.0 [Zeller 2005]. Firstoimge

etry is defined and initialized to some arbitrary positioncts as

the origin. Then this geometry is rendered with a vertex shad Figure 2: The springs of the example molecules shown in Eigur
that resets the positions and normals of the vertices tesaitored Notice that springs need not correspond to unique triandges
in textures. This method can also be used in OpenGL using the and can be defined according to the desired effect.
ARB_vertexshader extension [Kolb et al. 2004]. In our imple-

mentation we use VTF, but either approach would work with the

rest of our system. The texture coordinate is chosen at initialization and doet
Figure 3 provides a visualization of how the vertex texteeli change. Thf ﬁos't'?n alnd normal must change according to the
works. In our system, each vertex of within each moleculeoisip ~ Movement of the molecule.

tioned at some arbitrary location, possibly the origin. #dawith The particles in our system are the vertices of the molecoe ¢

its position, normal, and the texture coordinates, eactexdras an

!] A structs, so in the following text we use the wox@stex ancparticle
extra set of texture coordinates where it can look up itshaties interchangeability.

within the position and normal textures. When the geometrenm-
dered, it is sent through a vertex shader where each venextse

position and normal to these values. 3.3 External Motion

There is a wide variety of external forces that can effectpituei-
cles, depending on the desired motion. Predefined voluoneta-
tor fields stored in 3D textures allow use to simply look upftiree
direction for a given molecule. However, this method of aklop
into a single grid cell of the volume may not be enough if thevflo
varies greatly from cell to cell. This would cause partidteswitch
direction sharply, creating unrealistic motion. To avdaist we
should find all grid cells surrounding a particle and moveyitin
average force.

3.2 Molecule Construction

Each molecule is a set of unique vertex positions that when co
nected with the correct geometry form some shape. Figuredsh
several examples, as they would be drawn by triangles. Agho
there are no restricts on the shape of the molecules, inogetheir
complexity greatly reduces the possible number of molectiat
can be manipulated and rendered in real-time. Furthernmane,
collision method is based on particle intersection, anctrangle
intersection. Thus, for our tests we have chosen molechisate Another method that is much less expensive in terms of stoisig
small and dense so that they do not commonly go through @bject to move a particle by a function of time and its previous posit

in the scene.

Since the unique vertex list, or vertex buffer, for each roole al- 3.4 Elasticity Forces

ways as the same order, index buffering can be used to remater t .)
Furthermore, since every molecule in the system is the same, Once the particles of a molecule have been moved according to

can use a single vertex buffer to store the vertices and Zesing external forces, restoration forces need to be appliedderahat
dex buffer to dictate what triangles will be drawn. the molecule sustain shape. To this end we use Hooke’s law,

which maintain an initial distance between the particlehinieach
Each vertex stores a position, a normal and a texture caatelin ~ molecule. These springs are defined between certain pajrarof

Ui

Figure 3: This diagram shows the idea behind a vertex teketich.
The vertices in the scene are fixed at arbitrary values (famgte,
the origin). They retrieve their actual position and norrfram
textures, using texture coordiates provided to them adliméition.

ticles (Figure 2). Every pair of particles need not have angpr
between them, and in fact the placement of springs depentteon
desired motion of the molecule. The springs maintain thee by
applying forces to the particles they are incident on. Thedmn a
particle along a spring is the product of a stiffness corisiad the
signed difference of the length of the spring from its iditength.
The particle is thus moved in the direction of the other platat-
tached to this spring by the force.

We did not implement Elasticity Forces in our GPU implemen-
tation, but we propose the following method for doing so. -Cur
rently, on the CPU, we store the spring information as anyasfa
floating vectors. This could be easily stored in a constaffebu
within a shader. We store the spring adjacency informatioe#éch
molecule vertex as an array of indices into the spring arféese
could also be constant buffers, since there will only neete@
small number, given the relative small size of the moleculethis
way we can implement any molecule shape with any spring config
uration on the GPU.

3.5 Molecule Normals

To be able to correctly light the molecules when they rendiena
will need to calculate their normals after the vertex positi have
been moved. This can be done simply by traversing the pasitio
texture in a pixel shader and determining the sum of the gtéan
normals adjacent to each vertex. This adjacency informaizm be
hard-coded into the shader or stored in constant bufferss e
quires some computational redundancy since the triangimaile
are computed multiple times, but this is unavoidable givengar-
allel nature of the hardware.

4 Results

The following section demonstrates our implementatiorth wie
use of images. It is broken up into two parts, one for our cpu im
plementation and the other for our gpu implementation. Tére p
formance results given where obtained from testing done BE a
running Windows XP with a Intel Pentium D CPU 3.2 GHz and a
NVIDIA GeForce 7900 GT/GTO.

4.1 CPU Implementation

We implemented our molecule system on the CPU with two types
of molecules, quad shaded and cross shaded (See Figure} and
In Figure 4, textured cross molecules are manipulated bynglesi
timestep of the wind speeds of Hurricane Bonnie. The motidheo
molecules within a volume has the same properties as theomoti
dye through such fields, as has been proposed in previousfarork

Figure 4: In this image we see the cross shaped moleculetioamac
Each of these molecule is made of 10 triangles, and even figtith a
image some characteristics about the nature of the vectdrcia
be observed.

Figure 5: Each of these simple quad molecules has beenqusiti

on random vertices of the smallest branches of this tree mode
Then, the bottom two vertices have been set so that they tanno
move. The resulting effect is that the leaves are attachttkttvee,

but still align themselves with the direction of the wind.

visualizing volumes. However, simulating dye spreadirgtlgh a
volume would not be able to reveal the overall direction effield

in a still image. However, it is clear from both Figures 4 antth&t
our molecules system is more than capable of conveying wlum
shape within still images.

We also experimented with attaching our system to fixed tbjeac

a scene. In Figure 5, we have initialized quad moleculesrida@
vertices on the smallest branches of a tree model. We thed fixe
the bottom two vertices of each quad, so they they are updsted
neither external or elasticity forces. The result are ledised to
the tree at the stem, but aligned with the direction of thedwin

Given the expressiveness of our system, we wish to showttlsat i
viable for real-time applications. At 55 frames per secanglwere
able to manipulate and render 300 of cross molecules, or 4580
molecules. Given the complexity of these molecules andxpees-
siveness of each, this is a fair number, although it couldrave a
great deal using a efficient GPU implementation.

Figure 6: This image is from our GPU implementation. Here; ve
tices have been positioned and lit using the positions anchals
in the textures in the upper left.

4.2 GPU Implementation

Our GPU implementation proved to perform worse then our CPU

implementation, even without the proposed elasticity ésrand
normal calculation passes. 1024 particles only update &b2es

a second, whereas they would run at an unhindered 60 frames pe

second with the CPU implementation. We will explain thistie t
conclusion section. This is not because of the overheadio§us
vertex texture fetch. When the molecules are not being epddagr
frame, thousands of molecules can be rendered to the sdrean a
unhindered 60 frames a second.

5 Conclusions and Future Work

Given the poor performance of our GPU implementation in com-
parison with our CPU implementation, it is clear our apploac
inefficient. We determined after inspection that the redsorthe
loss in performance is that our implementation is not hagdihe
textures efficiently. Instead of rendering using textuneshe GPU
and rendering to textures on the GPU, we are sending andiregei
texture data across the bus several times each frame. he forark
we would like to correct this implementation so that textdega
are left on the GPU after it is first initialized, and manigathonly
indirectly by the CPU. After we have done this we hope to aghie
the performance gains from previous GPU accelerated watkisn
field.

We feel that this paper is merely proof of concept. We wishxto e
tend it in order to create an advanced molecule system thad co
be used within larger systems without hindering them. Onee w
have improved the efficiency of our GPU implementation, exam
ples such as the one shown in Figure 5 will be far more impressi
since many more leaves are required to cover a tree than dur CP
implementation can handle. We would also like to use more-com
plex molecules for the leaves which will be more expressarel
implement more algorithms for conveying wind motion. The re
sults in the figure to do not animate in a convincing way simee t
vector field used has fixed forces at each cell. Using noiseautdv
achieve some of the complexity that one would normally sebén
subtle motion of leaves on a tree. We could also explore some |
cally evaluated equation methods, such as Fournier anceRbeve
used to simulate realistic ocean waves [Fournier and RES&%].
Given a depth value at each vertex, we can determine théquostt
that vertex as part of a wave. This has been used in cloth ationl

and could also be utilized in simulating wind.

Furthermore, we would like to implement collision response
our application. This could include collision with terraand
fixed objects using depth maps, as well as self collisions/den
molecules and triangles within molecules. Should featuresid
further cement our system as part of a virtual environmehgrer
the individual molecules interact with the scene.

6 Acknowledgments

We would like to thank Alark Joshi for his support and prowigli
us with the Hurricane Bonnie data.

References

ECHTLER, F. 2004. Efficient Realization of Mass-Spring Systems
on Graphics HardwarePhD thesis, University of Munchen.

FEDKIW, R., StAM, J.,AND JENSEN, H. W. 2001. Visual sim-
ulation of smoke. I'SIGGRAPH '01: Proceedings of the 28th
annual conference on Computer graphics and interactiva-tec
niqgues ACM Press, New York, NY, USA, 15-22.

FOURNIER, A., AND REEVES, W. T. 1986. A simple model
of ocean waves. IIBIGGRAPH '86: Proceedings of the 13th
annual conference on Computer graphics and interactivh-tec
nigues ACM Press, New York, NY, USA, 75-84.

GEORGII, J.,AND WESTERMANN, R. 2005. Mass-spring systems
on the gpu.Simulation Modelling Practice and Theory 13—
702.

HARRIS, M. J., BAXTER, W. V., SCHEUERMANN, T., AND
LASTRA, A. 2003. Simulation of cloud dynamics on graph-
ics hardware. I'HWWS '03: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware
Eurographics Association, Aire-la-Ville, Switzerlandwi&er-
land, 92-101.

HARRIS, M. 2004. GPU Gems: Programming Techinques, Tips,
and Tricks for Real-Time Graphics Addison-Wesley Profes-
sional, ch. 38, 637-665.

JENS KRUGER, PETERKIPFER, P. K., AND WESTERMANN, R.
2005. A particle system for interactive visualization offRaivs.
IEEE Trans. Visualization and Computer Graphics 61 744—
756.

KIPFER, P., SGAL, M., AND WESTERMANN, R. 2004. Uber-
flow: a gpu-based particle engine. HWWS '04: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graph-
ics hardware ACM Press, New York, NY, USA, 115-122.

KoLB, A., LATTA, L., AND REZK-SALAMA , C. 2004. Hardware-
based simulation and collision detection for large pasticl
systems. InHWWS ’'04: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware
ACM Press, New York, NY, USA, 123-131.

LANDER, J. 1998. The ocean spray in your faGame Developer
5, 7 (July), 11-16.

REEVES, W. T. 1983. Particle systems - a technique for modeling
a class of fuzzy objects. IBIGGRAPH '83: Proceedings of the
10th annual conference on Computer graphics and interactiv
techniqguesACM Press, New York, NY, USA, 359-375.

STAM, J. 1999. Stable fluids. IBIGGRAPH '99: Proceedings
of the 26th annual conference on Computer graphics and-inter
active techniquesACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 121-128.

TELEA, A., AND VAN WIJK, J. J. 2003. 3d ibfv: Hardware-
accelerated 3d flow visualization. \AiS '03: Proceedings of the
14th IEEE Visualization 2003 (VIS'03EEE Computer Society,
Washington, DC, USA, 31.

TERzOPOULOS D., PLATT, J., BARR, A., AND FLEISCHER, K.
1987. Elastically deformable models. $iGGRAPH '87: Pro-
ceedings of the 14th annual conference on Computer graphics
and interactive techniquesACM Press, New York, NY, USA,
205-214.

ZELLER, C., 2005. Nvidia sdk white paper : Cloth.

