
High Definition Interactive Animated Ray Tracing on CELL Processor using
Coherent Grid Traversal

David R. Chapman∗

University of Maryland Baltimore County

Abstract

The IBM/Toshiba/Sony CELL processor exhibited on the SONY
Playstation 3 offers a large amount of parallel processing power for
it’s price; this power can be exploited during ray-tracing. The ad-
ditional computing power stems from multiple cores with entirely
SIMD instruction sets, slow branch performance, and no cache-
miss detection. Unfortunately, this processor design is not well
suited for typical Ray Acceleration Scheme (RAS) traversals that
rely heavily on stack recursion and branching. Recently, packet-
based traversals of RASs have demonstrated speed increases of
at least an order of magnitude over traditional approaches when
computing at high image resolutions on traditional desktop pro-
cessors. Frustum-based uniform grid traversals in particular not
only demonstrate this incredible performance, but can apparently
be optimized for execution on parallel SIMD processors such as
the CELL. Additionally, uniform grid traversals allow for animated
scenes via dynamic scene voxelization.

Keywords: Ray tracing, CELL Processor, multi-core

1 Introduction

Ray tracing is described as ”embarrassingly parallel”, because the
algorithm can easily be partitioned onto parallel threads of execu-
tion. For example, the correctness of ray-object intersection tests
does not depend on the order in which they are executed. Thus,
many rays and objects could be intersected in parallel while com-
puting an image.

Unfortunately, CPUs are not designed to efficiently execute par-
allel algorithms such as Ray tracing. Historically, CPUs have in
large part been designed to execute a single sequential thread of
program logic, for which any instruction may depend on the re-
sults of it’s predecessors. Valuable CPU real-estate is expended to
employ heuristic hardware to execute in parallel sequentially orga-
nized threads with ever diminishing performance gains. For Ray
tracing, this real-estate could be better utilized by performing more
arithmetic computation.

The CELL processor exhibited on the Sony Playstation 3 is a radical
processor design that provides 200 GFlops, which for comparison
is 35 times more than an AMD Opteron CPU [Pham et al. 2005].
This incredible performance is possible under the assumption that
many instructions will be executed in parallel. This assumption typ-
ically holds true for Ray tracing, and thus the CELL processor is an

∗e-mail: dchapm2@umbc.edu

intuitive candidate for Ray tracing. The CELL processor contains
9 cores; 8 of which are Synergistic Processing Units (SPUs), which
have entirely SIMD instruction sets. The 9th core is a traditional
PowerPC processor.

Although performing Ray tracing on the CELL processor is clearly
intelligible. It is not entirely obvious how to do so efficiently. There
are additional challenges when attempting to perform High Defini-
tion Animated Ray tracing. For example, although it is easy to par-
allelize Ray tracing via Multithreading, CELL also provides mas-
sive SIMD power, but it is more difficult to SIMDize RAS traver-
sals. Many traversals are optimized for traditional processors, and
make heavy use of branching and stack recursion, which cannot
easily be mapped to the SIMD execution model.

Another reason why High Definition Ray tracing is challenging, is
because the running time of Ray tracing is linear with the number
of rays in the scene. In other words, when the screen size is multi-
plied by two in each dimension, Ray tracing typically slows down
by a factor of 4. Fortunately, in practice packet and frustum RAS
traversal algorithms do not suffer as much from poor performance
with large screen size. However, these schemes typically have even
more complicated traversals, which can make SIMD execution even
more difficult.

The goal is to adapt a fast a Ray Acceleration Scheme for a Ray
Tracer on the CELL processor of a Playstation 3. The Ray Ac-
celeration Scheme must allow for Animated Scenes, at real time
or interactive framerates, while running at High Definition screen
resolutions.

2 Related Work

Ray tracing has already been implemented on the IBM CELL Pro-
cessor. Carsten Benthin implemented Coherent Ray tracing using
a Packet based Bounding Volume Hierarchy traversals. This pa-
per demonstrated a Ray tracing system on the CELL processor can
provide performance roughly 9 times that of a traditional processor.
This paper demonstrates the importance of the traversal implemen-
tation, as it obviates that 80%+ of the processing time is spent per-
forming traversals. Unfortunately, their Bounding Volume traversal
implementation was complicated enough that it required branching
during the traversals, which slows down the CELL performance. In
addition, their method required an expensive branch mis-prediction
nearly 40

Packet and or frustum traversals for Ray Acceleration datastruc-
tures have been developed for all of the major datastructures such
as BVH, BSP-tree, Octree, KD-tree, and uniform grid [Wald et al.
2007; Haitao Du 2003; Reshetov et al. 2005; Benthin et al. 2006].
A packet traversal is one in which a group of similarly oriented
rays is traced through the datastructure at a time, rather than trac-
ing individual rays at a time. A frustum traversal is a variation
on this in which packets are bounded by bounding-frustums, and
these bounding-frustums are traced through the datastructure at a
time. These traversals all provide significantly higher performance
at high screen resolutions than traditional traversal algorithms with-
out packets. This is because all of the traversal cost is amortized
over the packets; as screen resolution increases, the number of rays



per packet increases, but the number of packets remains constant,
thus the average cost per ray is lessened.

Unfortunately, not all of the traversals are suitable for animated
scenes. For example, Octrees, KD trees, and BSP trees are gener-
ally thought of as too slow for dynamic reconstruction. For exam-
ple, KD-tree construction takes seconds to minutes to perform using
typical algorithms. Although work has been completed that allows
for certain restricted forms of animation using KD-tree deforma-
tions [Günther et al. 2006], It is difficult to apply these techniques
to random motion. Uniform Grids and BVH trees, on the other
hand, are generally considered to provide fast enough rebuilding
time for animated scenes.

Uniform Grids also appear to be most SIMDizable RAS. Although
Foley and Sugarman had developed SIMD traversal algorithms for
KD-trees, their algorithms have not been applied to packet based
KD traversals [2005]. Szirmay-Kalos et al. have developed an ex-
tremely fast fully SIMD approximation to Ray tracing, but their
approximation is unfortunately lossy, so it would be difficult to in-
corporate into this project [2005]. In general, the difficulty with
SIMDizing RASs because of the hierarchical nature of the datas-
tructure, and the branching and stack requirements of tree traversal
break the SIMD paradigm.

Uniform grids are the only popular non-hierarchical RAS, and thus,
simple traversals can be developed that do not require use of a stack
[Wyvill 1988]. These traversals are easier to SIMDize. In addition,
Uniform Grids can be reconstructed very quickly, and every frame
if necessary. Thus they make a good candidate for animated scenes
[Wald et al. 2006].

I attempt to modify a SIMD frustum-based uniform grid traversal
algorithm by Wald et al. [2006], for efficient implementation on a
Playstation 3. Their algorithm takes a packet of rays, and produces
a bounding frustum. It then outwardly traverses the frustum slice by
slice through the grid while computing all voxels for which the frus-
tum intersects. All of the rays in the frustum are intersected with
all objects in the slice, and frustum culling and mailboxing are used
to weed out unnecessary intersection tests [Wald et al. 2006]. We
propose to implement this algorithm on the cell processor, because
it not only provides fast ray acceleration at high resolutions much
like the other packet and frustum based traversal algorithms, but
the traversal algorithm is stack-less, and overwhelmingly SIMD.
For example, computing bounds on the next slice, as well as object
frustum culling are all totally SIMD operations. This makes effec-
tive use of the SPU instruction set. The paper does not provide a
good method of traversing rays generated by reflection or refrac-
tion. In addition, the technique for packet based shadow tracing is
slightly convoluted, so as a result, secondary Ray tracing will be an
extension to the project and nothing more. In addition, there are still
parts of the traversal that were designed for traditional CPUs, such
as the iterative loop to traversing a packet through the grid. Modifi-
cations will still be necessary for this algorithm to be implemented
efficiently on the CELL processor [Wald et al. 2006].

3 Implementation and Lessons Learned

This project was originally intended to be a joint project with
Charles Lohr to implement an optimized Ray Tracer on a Playsta-
tion 3, where Mr. Lohr would develop the ray-object intersection
routines, and this project would implement the RAS. The imple-
mentation of this project is unfinished and parts of it are untested.
The RAS is not functional enough to be combined with Mr. Lohr’s
raytracer. But this project offers many lessons learned, which pro-
vide a theoretical contribution to SIMD Ray acceleration. We have
modified the Coherent Grid Traversal algorithm in a way which

we expect to perform efficiently on the CELL architecture, and de-
scribe the design decisions that provide a theoretical contribution to
researchers that plan to develop this or similar acceleration schemes
on similar SIMD architecture. empirical performance analysis, un-
fortunately, is not yet available due to the unfinished state of the
implementation as of this writing.

We have learned many lessons about how to implement Coherent
Grid Traversal on the Cell. Foremost, we have learned to make
special considerations to work around the processor’s weaknesses
which we describe in detail. By doing so we expect to receive great
performance increases as compared to implementations for tradi-
tional processors.

3.1 Bandwidth Limitations

At High Definition resolutions, the simple act of rendering pixels
provides challenging limits on bandwidth usage. Resources must be
expended to transfer pixels from the processor to the framebuffer.
We have noticed on the Playstation 3, at 720p, simple programs that
we have written to test the rate of writing pixels to the framebuffer
run between 30 and 60 frames per second, which is significantly
slow because our implementation targets real-time rendering. This
imposes limitations on our implementation, because this leaves lit-
tle bandwidth between processor and RAM to perform anything
other than writing pixels.

A lesson learned is that the bandwidth required to write pixels is an-
other reason to avoid large scenes with more than several thousand
objects, because these scenes, along with their supporting datastruc-
tures, would not fit entirely on the CELL SPU’s local store. Render-
ing of large scenes would not only require loading of objects from
RAM require an efficient method of software caching, it would re-
quire even more expensive bandwidth from the processor to RAM,
which would compete with the already slow bandwidth from pro-
cessor to framebuffer. Efficiently loading objects from RAM, is
clearly a very hard problem that we have not attempted to solve.
We assume that all objects reside on the 256KB local storage.

We have noticed that the task of partitioning screen pixels into par-
allel chunks is a difficult consideration. Horizontal scanlines are
the fastest way to write pixels on the Playstation 3. Unfortunately,
they cause difficulty for the Coherent Grid Traversal. The frustum
traversal requires that frustums of rays are generated from coherent
packets. These packets can be effectively produced by assigning all
of the rays from a block of pixels on the screen. Unfortunately, the
framebuffer effectively requires that the screen is partitioned into
scanlines rather than blocks. We are currently implementing a so-
lution for which the screen is partitioned into blocks of scanlines,
and that these partitions are processed in parallel on the SPUs. for
720p, the blocks of scanlines are 4 pixels vertical and 1280 pix-
els horizontal, and thus can be generated as blocks but written to
the framebuffer in scanline order. This solution will work for 720p,
but is not scalable to higher resolutions. The RGBA framebuffer re-
quires 4 bytes per pixel, and we doubt that we will implement larger
blocks because the total temporary storage required by this method
is 20 KB, which is already a significant portion of the 256KB avail-
able on the SPU. The small vertical resolution means that we can-
not traverse coherent blocks larger than 4x4 pixels. According to
Wald et al. [2006], is an efficient size for 1024x1024 which is a
comparable resolution to 720p. Unfortunately, larger screen reso-
lutions would require even more storage space on the SPU, which
we would not be able to acquire.



Figure 1: Example of partitioning the screen into blocks of scanlines. Blocks are rectangular regions of pixels, where scanlines are horizontal
lines of pixels. Notice how the each four scanlines are combined into a long block, but each block is processed by the ray tracer in 4x4 chunks
delimited by the blue separators in the figure.

3.2 Storage Limitations

Each SPU contains 256KB local store, which is does not directly
interface with Random Access Memory, unless explicitly told to
do so. Due in part to time constraints, and in part to obtain the
maximum possible performance, we will restrict the scenes that we
wish to Ray trace to those that will fit entirely onto the SPU’s local
store. Due to the mirrored programming model, this means that
all of the contents of the entire scene, including the Uniform Grid,
data objects, program logic, and temporary storage must reside on
the local store of a single SPU, and this local store will be mirrored
across all of the SPUs.

Due to this tight use of memory, we intend to use grid sizes smaller
than the ”ideal” 5 voxels per primitive shown by Wald et al. [2006].
There are many reasons for this. One reason is because we feel that
the storage required for large grids will be a limiting factor. We will
supply 32 bytes per grid cell in order to specify references to con-
tained primitives. For a model with 2,000 spheres, a 10,000 voxel
grid would require 312.5 KB, which is more than the 256KB avail-
able for all data combined. We do not expect to have storage for
grids larger than 16x16x16, which would require over 130KB. An-
other reason to use smaller grids is to downplay the importance of
mailboxing, because we do not intend to implement mailboxing.
Mailboxing is an optimization for Coherent Grid Traversals, for
which objects that reside in multiple grid cells are only intersected
once, by keeping track of which objects have already been inter-
sected, and allowing intersections only with new objects. We do not
believe that the constant-time cost of ray-object intersection is as se-
vere on the Playstation 3 as it is on a traditional computer, because
we do not load objects from RAM. However, we believe that the
cost of mailboxing, is more expensive on a Playstation 3, because
a fair amount of branching is required in order to keep track of the
history of intersected objects. By using a smaller grid, we reduce
the necessity of mailboxing in two ways. Firstly, it is less likely that
objects will span the multiple grid cells, because the size of a grid
cell increases is the number of cells decreases. Secondly, there are
fewer grid cells to traverse, which means that even less time will
be spent on redundant intersections. We feel that smaller grid sizes
are applicable to our implementation in several ways. However, the
drawback of this strategy is that more objects reside in each grid
cell, which makes frustum culling even more important.

Frustum culling is an optimization to Coherent Grid Traversal that
we intend to implement. Although we have not written the code

for this yet, the algorithm is very clear, because given four frustum
planes, it is trivial to determine whether a sphere intersects the frus-
tum, just by comparing the sphere’s position with the plane equa-
tions. Only objects that intersect the bounding frustum are tested
for intersection with the rays within the frustum. The overhead
induced by frustum culling is that each object must be tested for
intersection with the frustum before it is tested with the individual
rays. In addition, an unpredictable branch is required, where if the
object is not in the frustum, then it will not be tested for the more
complicated ray-sphere intersections tests provided by Mr. Lohr.
One might expect that this piece of the algorithm is not apparently
suitable for the Playstation 3 because of it’s use of branching, but
we contribute that much as the case with the CPU implementation,
we expect that frustum culling should still provide a large speed
increase for the CELL Coherent Grid Traversal, because the com-
plexity of code required to frustum cull is still significantly less than
Mr. Lohr’s code to provide 16 rays with sphere intersection tests.
As a result, many could be quickly discarded by frustum culling be-
fore attempting to perform the intersection tests. This is similar to
what Wald et al. [2006] found for frustum culling performance ben-
efit on traditional CPUs, as the number of ray-object intersections
was reduced by a factor of 4 - 8. Since we are using smaller grid
sizes than Wald et al. [2006], and not implementing the mailboxing
optimization, frustum culling will likely provide even more benefit.

3.3 Branching Limitations

Although Coherent Grid Traversal is non-hierarchical and requires
no recursion, it still has a large demand for looping, which if mis-
predicted, separates the basic blocks of execution, and causes many
pipeline stalls. On the CELL SPU, branch hinting is also very lim-
ited compared to than of traditional processors. For if statements,
it is often less expensive to compute both clauses of the statement,
and then undo the incorrect clause using bitwise operations. Branch
prediction does not exist on the CELL SPUs to the extent that it ex-
ists for traditional processors. However, branch hint instructions
allow for fast execution provided that the hint is able to correctly
predict the branch. The algorithm for Coherent Grid Traversal is
described in Figure 3 Top. The algorithm requires that for any par-
ticular bounding frustum of rays, all of the grid cells that intersect
the frustum are traversed outwardly from the camera. The outer
loop traverses slice by slice along the axis that is most parallel to the
direction of the Frustum. The two inner loops traverse the square re-
gions within each slice. Unfortunately, this exact looping structure



Figure 2: 2D Example of Coherent Grid Traversal. Assuming that the frustum is aligned primarily with the X axis such as with this example,
Coherent Grid Traversal requires that for every unit of X axis going outwardly from the camera, every vertical slice must be accessed, and
for every vertical slice, the blue lines, denoting the frustum boundaries show which grid cells must be traversed. Coherent Grid Traversal
extends this traversal algorithm into 3D, by using a 2D traversal for every slice.

does not map well to the CELL processor. The outer loop cannot be
predicted, because it only decrements the number of slices and then
calls the inner loops, and the Cell Processor cannot issue a branch
hint to such a complicated structure. Also, the inner loops cannot be
predicted. The inner loop could execute between 1 and 3 iterations,
which is not enough to merit branch prediction, because either an
”always predict branch” or ”always predict no branch” would fre-
quently mis-predict. As a result, the obvious traversal pseudocode
will mis-predict over 50

Rather than using these 3 nested loops, We decided to perform one
single loop that traverses grid cells in the same order as these 3
nested loops (See Figure 3 Bottom). This code looks more com-
plicated but it maps better to the Cell architecture. The if/else can
be implemented without branching. Thus, this single loop is sim-
ple enough for the Cell processor to issue branch hints to improve
looping performance.

By using the ”always predicting branch” strategy, this loop will
only mis-predict the branch of the last iteration. The drawback is
that the solution to each of the 3 if/else clauses must be computed
for every iteration, and then the incorrect clauses must be forgotten.
However, on an architecture like CELL, where branch prediction is
not very powerful, it is beneficial to avoid mis-prediction as much
as possible. This code for traversal has been written, but not tested
or benchmarked, so we can only theorize that the modified loop is
faster than the 3 nested loops on CELL architecture.

3.4 Efficient Voxelization

Animated scenes require modification to the uniform grid datastruc-
ture. We will allow for any animation by voxelizing the uniform
grid every frame. Because we use the mirrored parallel program-
ming model for the CELL SPUs, we need every SPU to voxelize
the scene in order to insert data into the uniform grid, thus this vox-
elization will occur once for every SPU. The voxels will contain 32
bytes each in order to specify their contained primitives to intersect,
these 32 bytes form a static list of 16 2-byte references to objects.

Assuming that objects are smaller than grid cells, we can apply a
simplified voxelization scheme that requires less code and running
time, and that produces no false negatives, and thus will not reduce
the resulting image quality. See figure 4 for a 2D illustration of the
following algorithm. For each object, a bounding box is computed,
and each of the eight corner points is voxelized. This simplified ap-
proach is acceptable only under the assumption that the grid-cells
are larger than the objects. This assumption is reasonable, because
it is consistent with other assumptions made throughout the project.
Namely, that all of the grid voxels fit within 150KB local storage,
which means that grid cells must be relatively large. It is also im-
portant to notice that this method is very efficient for the CELL
SPU to voxelize, primarily, because the CELL will always attempt
to voxelize exactly 8 points. Because the number of points is known
to be a small constant, namely eight, no looping is required to deter-
mine each point to voxelize. Moreover, voxelization is inherently
parallelizable, because each of the 8 corner points can be voxelized
independently.

It is necessary that each object be voxelized quickly, and voxelized
only once. For example, if all eight corner points lie withing a
single voxel, then the object should be listed only once, not eight
times. We ensure both properties elegantly by using a fixed sized
queue for each voxel, and by writing to each queue in parallel. Each
voxel contains a queue of up to 16 two byte indexes. Each index is
a reference to a particular object that intersects or resides within a
grid cell. When an object is voxelized, it’s reference is pushed onto
the 32 byte voxel queue. For every object, the queues that corre-
spond to the voxels of the eight corner points are each computed
separately and in parallel. This means that if two or more corner
points happen to reside within the same grid cell, then the object
would only be gridded once within that grid cell. For example, let’s
assume that the sphere, and thus it’s bounding box, are entirely con-
tained within a single grid cell. Because each corner point would
perform it’s own independent push operation on the same 32 byte
queue, they would all produce the same resulting queue, and this
value would be written to the same location in memory eight times
(once for each duplicate corner point), which is the same as a sin-



gle voxelization. On the other extreme, if all eight corner points
lie in different voxels, then each of the eight queues will be written
to only once, so the object will be properly voxelized into all eight
cells. Due to the queue’s small size, pushing an element onto a
queue requires only 6 SIMD logical instructions, because append-
ing a new element to a queue only requires that all 32 bytes be
shifted left by two bytes, and then the new element written to the
first two bytes.

4 Conclusion and Discussion

We describe a solution for ray acceleration on the Playstation 3
that should perform efficiently at High Definition resolutions, and
we believe will allow for Interactive or Real Time ray-tracing at
these resolutions of scenes with several hundred to a few thousand
spheres, provided that the scene does not make use of secondary
rays. The implementation modifies Coherent Grid Traversal to per-
form efficiently on the Playstation 3 architecture, and we describe
the parts of this modification that provide an intellectual contribu-
tion. The described system is designed and implemented in frag-
ments, and we are looking forward to debugged it so that it can be
benchmarked.

The most immediate step of future work is to finish debugging the
implementation. The voxelization algorithm is working perfectly,
but the looping algorithm still has yet to be debugged properly. We
believe that our alternate looping structure described in the paper
has benefits over the traditional loop, but we have yet to construct
hard empirical statistics from both methods.

An eventual goal would be for this system to be used as part of a
computer game or simulation, where the simulation is executing on
the PowerPC core, and the real time ray-tracer is executing on the
SPUs. We feel that we are taking a step in this direction by writ-
ing all of the code onto the SPUs, in order to leave the traditional
PowerPC cores available for execution of traditional programs such
as games. However, we recognize that more research must be done
beyond the scope of this project in order for games or simulations to
be practical using our implementation. For example, games tend to
make use of meshes and particle systems that require very large
storage of many triangles, whereas our implementation requires
that all objects, datastructures, and binaries reside entirely in the
local storage of each SPU. It is worth exploring ways of batching
traditional meshes from RAM, but we believe that many batched
Stochastic features in games such as terrain and particle systems
could be replaced with procedural features such as fractals or noise
which require significantly less storage. We leave these directions
open to future research.

References

BENTHIN, C., WALD, I., SCHERBAUM, M., AND FRIEDRICH, H.
2006. Ray tracing on the cell processor. IEEE Symposium on
Interactive Ray Tracing 2006 (September), 15–23.

FOLEY, T., AND SUGERMAN, J. 2005. KD-tree acceleration
structures for a GPU raytracer. In HWWS ’05: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graph-
ics hardware, ACM Press, New York, NY, USA, 15–22.

GÜNTHER, J., FRIEDRICH, H., WALD, I., SEIDEL, H.-P., AND
SLUSALLEK, P. 2006. Ray tracing animated scenes using mo-
tion decomposition. Computer Graphics Forum 25, 3 (Sept.),
517–525. (Proceedings of Eurographics).

HAITAO DU, NOZAR TABRIZI, Y. L. N. B. M. F. 2003. Interac-
tive ray tracing on reconfigurable SIMD morphosys. Design, Au-

tomation and Test in Europe Conference and Exhibition, 2003,
144–149. ISSN 1530-1591.

PHAM, D., ASANO, S., BOLLIGER, M., DAY, M. N., HOFS-
TEE, H. P., JOHNS, C., KAHLE, J., KAMEYAMA, A., KEATY,
J., MASUBUCHI, Y., RILEY, M., SHIPPY, D., STASLAK, D.,
SUZUOKI, M., WANG, M., WARNOCK, J., WEITZEI, S.,
WENDEL, D., YAMAZAKI, T., AND YAZAWA, K. 2005. The
design and implementation of a first generation cell processor.
Solid-State Circuits Conference, 2005. Digest of Technical Pa-
pers. ISSCC. 2005 IEEE International 1 (February), 184–592.

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-
level ray tracing algorithm. ACM Trans. Graph. 24, 3, 1176–
1185.

SZIRMAY-KALOS, L., ASZODI, B., LAZANYI, I., AND PRE-
MECZ, M. 2005. Approximate ray-tracing on the GPU with
distance impostors. COMPUTER GRAPHICS FORUM 24, 3,
695–704. ISSN 0167-7055.

WALD, I., IZE, T., KENSLER, A., KNOLL, A., AND PARKER,
S. G. 2006. Ray tracing animated scenes using coherent grid
traversal. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers,
ACM Press, New York, NY, USA, 485–493.

WALD, I., BOULOS, S., AND SHIRLEY, P. 2007. Ray Tracing De-
formable Scenes using Dynamic Bounding Volume Hierarchies.
ACM Transactions on Graphics 26, 1.

WYVILL, G. 1988. Analysis of an algorithm for fast ray tracing
using uniform space subdivision. Visual Computer 4, 2 (March),
65–83. ISSN 0178-2789.



Figure 3: Pseudocode for different Coherent Grid Traversal implementations, assuming that the frustum is primarily aligned to the X axis.
Top shows the original implementation. Bottom shows the modified version for Playstation 3. Notice that the if/else blocks do not require
branching, because all 3 clauses can be computed, and bitwise operations can be used to remember only the correct result. Therefore, 3 loops
(Left) are compressed into 1 (Right).



Figure 4: 2D Example of Voxelization algorithm. Bounding boxes are computed for every sphere, and each of the corner points of the box
is voxilized. Assuming that the spheres are smaller than the grid cells, this algorithm produces no false negatives, which means that any
subsequent ray-tracing will be correct. The lower left sphere shows an example of a false positive, where the lower left grid cell does not
contain the sphere, but a bounding box contains a point in this cell. We expect this case to be rare, but even so, it only causes a minor
performance drop during ray-tracing. It would not lead to incorrect results, just unnecessary intersection tests.


