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Abstract 

The subject of Non-Photorealistic Rendering (NPR) is one 

which tends towards a certain, small set of targeted 

appearances. Work in NPR - in particular in real-time 

graphics - is generally aimed at a classic cel-animated, 

"cartoon" visual style - that is, solid black outlines with 

clamped ramp shading. While this look is often arresting and 

interesting, it is a narrow approach to NPR. Even within the 

bounds of a "cartoony" style, significant variations can be 

found. 

Of particular interest is the art of illustrator Mike 

Mignola, popularized in his Hellboy comic book series. We 

present a method for rendering a pre-built model in the style 

of Mignola’s illustration. GPU acceleration is used to funnel 

large numbers of geometry-based edges, without a huge 

performance drop. Vertex Buffer Objects (VBOs) are used to 

create strokes along the outside edge of geometry, and along 

the edges of shadows. 

1. Introduction 

NPR has long been used as a way to abstract or simplify the 

output of a renderer. While sometimes often purely aesthetic, 

as in real-time video games like Okami (Figure 1), it has also 

been used to simplify rendering, or to allow CG objects to 

blend in with real-time video footage. 

One of the less explored realms of NPR is illustrative – 

that is, NPR in the style of an illustration or drawing. While 

“sketchy” renderers have been developed, these tend to be 

based more around replicating the materials used to create an 

image, and less around replicating a particular style of 

drawing. We aim to explore the stylistic capabilities of a 

GPU-based illustration renderer. 

In particular, we attempted to mimic the style of graphic 

novel illustrator Mike Mignola. Mignola’s Hellboy series is 

renowned for its extremely recognizable style, with high-

contrast lighting, angular designs, and very textured line 

work. (Figure2) There is a lot of detail, in spite of this 

contrast. Very small, rough features – visible here in the 

jacket – is described with small, rough marks. The line 

between light and dark is almost ragged, as seen along 

Hellboy’s arm and leg where it zigzags. These minor details 

are not approachable using traditional cel-shading 

techniques. In such an approach, this detail would have to be 

described texturally, such that it would only work from 

certain angles, or geometrically, which would increase the 

model complexity by orders of magnitude. These limitations 

combine to make a real-time approximation of Mignola’s 

style intractable using these old techniques. New tools must 

be developed. 

While many NPR solutions have been image-based, 

doing post-processing on 2D rendered images, we developed 

a geometrically-based solution. We attempted to use a 

combination of graftal-based detailing [Kowalski et al. 1999] 

and fin-extrusion “sketchy outlining” [Loviscach 2005] to do 

this. Graftals would be used to programmatically detail 

otherwise smooth surfaces or shadows, while the outlining 

will be used to draw illustrated edges. Graftals would also be 

used to modify the edge between light and darkness along a 

surface. Unfortunately, complexities with the Graftal model 

of detailing arose during the project. Drawing a line 

demarking shadow edges proved more difficult than 

originally thought as well, resulting in several unsuccessful 

attempts to generate shadow-bounding edges. 

 

Figure 1: Still from the video game Okami. 

 

Figure 2: Original illustration by Mike Mignola. 



 

2. Related Work 

Hertzmann and Zorin [2000] were interested in simulating 

artistic shading and hatching in rendered images. In 

“Illustrating Smooth Surfaces,” they analyzed both the 

technical and stylistic approaches to shading used by artists – 

in particular, by line-artists who created engravings or 

woodcuts. By analyzing these pre-existing images, 

Hertzmann and Zorin were able to develop new approaches 

to shading, and development methods which, while not 

strictly realistic, made it much easier for viewers to interpret 

complex images. They determined that hatch curvature was 

less useful for describing small details, but instead developed 

techniques to overlay different directions of straight hatching 

to describe changing or curving surfaces. They also 

developed “Mach bands” and undercuts, techniques to 

enhance the contrast between overlapping but similarly lit 

areas on the same surface.  

All of these techniques represent stylistic achievements. 

They take advantage of optical illusions or confusion of the 

viewer’s eye to simulate otherwise complex images. 

Likewise, the use of non-realistic lighting techniques by 

Gooch et al. [1998] allowed for a far greater apparent 

dynamic range than a realistic lighting model would have. 

This research combines to describe many situations in 

which stylization is not only aesthetically pleasing, but also 

conveys useful information. By studying artists rather than 

physics, these researchers found novel ways to render 

otherwise complicated subjects. 

Several papers have described interactive methods of 

generating artistic renders. Salisbury et al. [1997] developed 

a technique for using a vector field and a vector-based 

collection of brush strokes to generate images that appeared 

hand-drawn. Their use of vector fields, albeit ones generated 

by an artist, were a precursor to the direction fields of 

Hertzmann and Zorin [2000]. The process of creating an 

image using this technique relied on having an artist place 

vectors along an image, and “color code” the image based on 

which stroke would be used to draw it in. 

Kalnins et al. [2002] continued with the interactive 

approach, but shifted from placing brush strokes on an image 

to placing them on a 3D model. While not real-time, the 

combination of a surface shader and a lighting model 

provided a complete package for controlling the artistic 

appearance of an NPR system. 

With the development of GPU-based rendering, 

complex variants on traditional rendering techniques were 

developed. McGuire and Hughes [2004] described a 

technique to use the GPU to determine edge-features and 

outlines, rendering them entirely using Vertex Buffer 

Objects. Loviscach’s “Stylized Haloed Outlines on the GPU” 

[2005] described a VBO-based GPU rendering technique for 

outlined edges that also uses multiple passes and image-

based jittering to create a very sketchy appearance. (Figure 

3) 

Finally, Kowalski et al. [1999] described a technique to 

approximate otherwise complicated appearances by stylizing 

and abstracting them using “graftals”. These graftals are 

small, easily modified pieces which can be used to draw fur, 

tufts, or other surface detail on an otherwise simple model. 

  

Figure 3: Haloed sketchy outlines. [Loviscach, 2005] 

 

3. Implementation 

We attempted to use four techniques to approximate 

Mignola’s artistic style. 

First, we outlined the models using the finning 

technique described by McGuire and Hughes [2004].  

Second, we used high-contrast lighting to give the same 

inky shadows Mignola uses. This was done on the GPU, 

using a vertex shader. We attempted to use a texture to 

provide the impression of drawing in the fills with a marker, 

but were unable to orient the textures properly without more 

information on the GPU.  

Third, we attempted to use graftals to simulate 

otherwise invisible surface detail – pock marks, bumps, etc. 

These were intended to be defined ahead of time, and will be 

present both in shaded and lit areas. They will particularly be 

used to define texture in large, well-lit areas. 

Fourth, we attempted to use several techniques – most 

notably graftals and textured outlines – to create complex 

divisions between lit and shaded areas. The “zigzagging” 

shadows seen in Figure 2, as well as other shading 

techniques, were explored. 

These techniques were applied to black and white 

images, mimicking the look of an un-inked illustration by 

Mignola. 

3.1. Outlining 

Outlining was executed using the Vertex Buffer Object based 

GPU-accelerated technique described by McGuire et al. 

[2004]. The model file is read into an Edge Mesh, in which 

information about an edge in the model is encoded into 

vertex position, color, and multitexture information. 

In order to determine whether an edge in a mesh is an 

outline edge, the normal vectors of the two facing faces must 

be compared. If one face normal faces the camera and the 

other does not, the edge between them is an outline edge. 

While this technique only works with faces that are 

guaranteed to be coplanar, this includes any triangular mesh. 

We tested this technique on several OBJ files with success. 

The relevant information can be encoded in several 

ways. While Loviscach encoded the information in to several 

floating-point values, rather than using the full 6-value 

method, this was not useful for our method. The four-value 



 

technique only worked when only edge-outlines were being 

drawn. Since we were attempting to draw non-outline edges 

along shadow boundaries, we had to include all 6 vector 

values. 

These 6 values are called v0, v1, v2, v3, n1, and n2. 

Each edge in the mesh must be described using all 6 of these 

values in the Edge Mesh. v0 and v1 are the positions of the 

endpoints of an edge, v2 is a third point on one face that uses 

the edge, and v3 is the position of the third point on the other 

face. n0 and n1 are the normal vectors of v0 and v1, 

respectively. The face normals of each of the faces sharing 

the edge, nA and nB, can be calculated using v0-4 and n0-1. 

(Figure 4) 

 

Figure 4: v0, v1, v2, v3, define the relevant vertices, while 

n0 and n1 define the relevant normals. nA and nB can be 

calculated in the vertex shader using cross products. 

[McGuire and Hughes, 2004] 

Since OBJs are described by indexed vertices and faces, 

we must iterate across the faces and store the implicitly 

defined edges. Each edge will be defined twice (once by each 

face which shares it), so we must protect against edge 

duplication. Once the edges are extracted, we can define the 

Edge Mesh.  

Since we used VBOs to pass edge information to the 

vertex program, we must encode edge information into a 

single vertex structure.  

When using VBOs, each vertex is described using an 

array of floats – one array for each attribute of the vertex 

being described. We used these attributes to encode edge 

information – specifically, the MultiTexCoord attributes. We 

encoded v0 and v1 into the Position and Color attributes, and 

the remaining attributes into MultiTexCoord0-3. We called 

this collection of edge-describing attributes packed into a 

single vertex object an “Edge Vertex Object.” 

Using only a vertex shader and a fragment shader, we 

cannot create additional geometry on hardware. Thus, while 

each Edge Vertex Object contains all necessary information 

to create an edge quad, the edge shader can only do this if it 

receives for “vertices” that it can transform into the corners 

of the quad. This means each Edge Vertex Object (EVO) 

must be duplicated four times – one for each corner. 

In order to make sure each EVO is transformed to the 

correct corner, we must include an indexing value. The first 

corner is index 0, the second corner is index 1, etc. This 

fourth value must be passed using an additional 

MultiTexCoord attribute. 

The vertex shader uses these attributes to transform the 

vertices to the appropriate positions. To do this, use the 

following vectors and values for them: 

s0 = (MVP * v0).xy 

s1 = (MVP * v1).xy 

p = normalize( <s0.y – s1.y, s1.x – s0.x> ) 

s0 and s1 are the screen-space endpoints for the edge, 

and p is a normalized vector perpendicular to s0 and s1. This 

means the final position on one vertex in the vertex shader is: 

Position    =  s0 + p   if i = 0 

  s1 + p   if i = 1 

  s1 - p   if i = 2 

  s0 - p   if i = 3 

If the edge is not an outline, its position is transformed 

to behind the clipping plane. This also culls it from the 

fragment shader, preempting the need for any additional 

culling. 

Stroke information and appearance can be passed as a 

texture, and applied to the strokes. This can be used for a few 

purposes. Most obviously, and as used previously, it can be 

used to define a stylized stroke appearance.  

3.2. Shading 

On close examination, in all but straight black-and-white 

outline illustration, Mignola’s drawings have subtle gradients 

found in them. These gradients add a little depth to even the 

well-lit areas of the drawing. While in Mignola’s illustration, 

these are often abstracted and simplified gradients, such 

simplification is outside the scope of this paper. To simulate 

the subtle shading, we simply implemented a clamped and 

modified shading algorithm. 

For the large “pools of shadows” that cover the models, 

we simply monitored the intensity of light in the fragment 

shader. If intensity was below a constant, α, the fragment 

color was set to black. Otherwise, it was modified using the 

following equation: 

Color = ((i*0.5)*(i*0.5)+0.75) * White 

Where i was the intensity. Using this equation, the 

gradient range was narrowed and moved, from ranging from 

0.5 to 1, to ranging from 0.75 to 1, and with a steeper falloff. 

This provided a subtler gradient than the default values. 

We experimented with using a texture to draw the black 

shadows, scanned from large fills in Mignola’s drawings. 

While the textures looked extremely hand drawn and worked 

in still frames, we were unable to get them to animate 

properly without information on surface orientation. 

3.3.  Surface Graftals 

We attempted to implement graftals, as described by 

Kowalski et a. [1999], but discovered several pitfalls which 

prevented them from being used.  

The findings of Hertzmann and Zorin [2000], and the 

techniques they used to generate a “direction field” along the 

surface of the model, were similar to the problems we faced 

while trying to develop graftals. We had expected to be able 

to avoid the problems of surface-orientation by using an 

illustrative technique – the assumption being that since the 



 

result was so stylized, no orientation of graftals would be 

necessary. Unfortunately, this was not the case. 

Close examination of Mignola’s work showed that the 

small marks used for surface details were not at all randomly 

oriented or distributed – while lacking depth, they all 

followed the 2D orientation of the surface they were placed 

along. This is most easily seen in Figure 4. The scale 

“graftals” placed along the tail of the mermaid are oriented in 

2D to match the curve of the tail. This orientation means 

graftals must be generated based on surface geometry. 

We then attempted to use an approach more directly 

related that that outlined by Hertzmann and Zorin. We tried 

generating graftals at edges, parallel to the screen but with 

one edge set to an edge on the mesh. Unfortunately, the 

orientation to the screen made self-intersection a significant 

problem. Without any time-consuming self-intersection 

prevention, there was no way to guarantee surface details 

wouldn’t disappear into geometry – especially with randomly 

placed graftals. 

Due to scope and time constraints, we were unable to 

attempt other solutions. 

3.4. Shadow Outlining 

As with surface graftals, shadow outlining proved more 

difficult than originally expected. 

Originally, we had intended to use edge-aligned 

graftals, as described above, to provide variation along 

shadow edges. The self-intersection problems of surface-

oriented graftals, however, were also a problem with 

shadow-bounding graftals. 

We moved on to attempt to use textured strokes to 

define edges. While self-intersection was still an issue, it was 

more manageable with controlled stroke-width. 

To determine if an edge was shadow-bounding, we 

simply used the same dot product used in the rendering 

equation to calculate light intensity at a point. As with the 

intensity clamping used for the shading, we used α as a 

cutoff. If the intensity on one edge-connected face was 

greater than α and the intensity on the other was not, that 

edge was a shadow-bounding edge. Intensity was calculated 

using the usual formula: 

Intensity = dot(light direction, face normal) 

The problems arose with actually finding a shadow-

bounding edge. With an outlined edge, there is no 

interpolation between points – that is, the outline will always 

be made of discrete, straight line segments. But with shading, 

there is interpolation between vertices, and even texture 

lookups to modify the vertex normal if normal mapping is 

used. All of this additional normal information is only 

accessible to the fragment shader. Since we did all 

implementation of the stroke-generation on the vertex 

shader, there was no way to get shadow-boundaries smoother 

than the edges of the triangulated mesh. In some cases, 

depending on triangulation, this led to a zigzagging stroke 

down the front of the mesh, which did not actually follow the 

shading. 

Without any sort of interpolation across triangles, there 

was no way to avoid this jaggedness.  

4. Results 

Edge stroking has been implemented on the GPU using 

the VBO solution described above. Any OBJ model can be 

loaded into an Edge Mesh, passed to the GPU in a VBO, and 

rendered with all edges as strokes. With outline-culling 

implemented, only the outline edges of the model are drawn. 

These strokes have UV coordinates defined, and can be 

drawn with textured strokes. (Figure 5) 

The “fill” of the model is a separate render pass with a 

different GLSL shader program. The black shadows are 

shaded using the fragment shader, as described above in 

section 3.2. This shading is placed behind the strokes. 

(Figure 6) 

Attempts to render surface-graftals failed, due to the 

difficulty of placing graftals along a surface without using 

any direction field detection algorithms and without self-

intersection problems. 

Attempts to render shadow-bounding strokes failed as 

well. While the narrowness of the strokes prevented any 

significant self-intersection, the inability to get any finer 

resolution than the triangle edges also led to zig-zagging 

shadow boundaries. 

 

Figure 5: At top, all edges are drawn. At bottom, only outline 

edges are drawn. 



 

 

Figure 6: An elephant model is Shaded using a combination 

of stroked outlines and shaded fills. Gradients are used to 

include subtle shape cues. 

In spite of the problems faced, we were able to develop 

an interesting-looking real-time shader which is comparable 

to the style of Mike Mignola’s illustrations. We implemented 

an entirely GPU-based rendering process to outline and 

shade any OBJ model loaded into the program. While the use 

of an Edge Mesh leads to approximately 9x the number of 

faces as a non-outlined model [McGuire and Hughes, 2004], 

the use of VBOs provides an offsetting efficiency, which 

allows even a 100,000 triangle model to run in real-time on a 

GeForce 6600 256 MB graphics card using GLSL. We also 

were able to pinpoint issues and concerns in more 

artistically-based NPR techniques – specifically, the 

importance of both gradient fills and direction fields. 

5. Future Work 

The problems faced by the researchers pointed out several 

avenues of approach to further work in the field of 

stylistically-targeted NPR systems. First and foremost, a 

system to preprocess a model and develop a direction field in 

real-time is a must. Any sort of brush or stroke-based 

rendering, including our original idea of using surface-based 

graftals, would need direction information on a per-vertex 

basis. 

Modification of the GPU outlining algorithm to include 

the ability to move edges to interpolate across triangles 

would be valuable as well. This would enable exploration of 

non-edge outlines which follow shadow boundaries, surface 

orientation, etc. without having jagged, zigzagging paths. 

Exploration of other, non-physically-based shading 

models would benefit all NPR techniques greatly. Our 

studies of illustrations showed that shading often follows the 

2D outline of an object, rather than its curvature or surface 

orientation. This flies in the face of traditional graphical 

lighting models. Any attempts to replicate this on a GPU 

would go a long way towards generating convincingly 

illustrative and artistic real-time NPR techniques. 

The development of GPU-based geometry shaders will 

make the techniques used to create edge fins much simpler in 

the future. While the researchers did not have access to an 

NVIDIA 8800 graphics card, needed to use the new 

geometry shaders, future researchers could use the geometry 

shader to generate the additional vertices instead of passing 

in four copies of the EVO. This would cut the number of 

EVOs to one fourth of the number used in our version, 

making this method that much more efficient. 

The use of VBOs precludes traditional vertex-based 

animation techniques. While the VBOs could be updated 

every frame, this would eliminate the efficiency offered. 

Several techniques have recently been used to “fake” 

animating VBOs, however, which could be applied to our 

techniques, allowing them to be used on changing models.  
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Figure 7: High-poly render of the Venus model using the 

Mignola shader. 

 

Figure 8: High-poly render of the Ataneal model using the 

Mignola shader. 


