
A GPU-Based Approach to Non-Photorealistic Rendering in the Graphic
Style of Mike Mignola

Christian Brown

University of Maryland Baltimore County

Abstract

The subject of Non-Photorealistic Rendering (NPR) is one

which tends towards a certain, small set of targeted

appearances. Work in NPR - in particular in real-time

graphics - is generally aimed at a classic cel-animated,

"cartoon" visual style - that is, solid black outlines with

clamped ramp shading. While this look is often arresting and

interesting, it is a narrow approach to NPR. Even within the

bounds of a "cartoony" style, significant variations can be

found.

Of particular interest is the art of illustrator Mike

Mignola, popularized in his Hellboy comic book series. We

present a method for rendering a pre-built model in the style

of Mignola’s illustration. GPU acceleration is used to funnel

large numbers of geometry-based edges, without a huge

performance drop. Vertex Buffer Objects (VBOs) are used to

create strokes along the outside edge of geometry, and along

the edges of shadows.

1. Introduction

NPR has long been used as a way to abstract or simplify the

output of a renderer. While sometimes often purely aesthetic,

as in real-time video games like Okami (Figure 1), it has also

been used to simplify rendering, or to allow CG objects to

blend in with real-time video footage.

One of the less explored realms of NPR is illustrative –

that is, NPR in the style of an illustration or drawing. While

“sketchy” renderers have been developed, these tend to be

based more around replicating the materials used to create an

image, and less around replicating a particular style of

drawing. We aim to explore the stylistic capabilities of a

GPU-based illustration renderer.

In particular, we attempted to mimic the style of graphic

novel illustrator Mike Mignola. Mignola’s Hellboy series is

renowned for its extremely recognizable style, with high-

contrast lighting, angular designs, and very textured line

work. (Figure2) There is a lot of detail, in spite of this

contrast. Very small, rough features – visible here in the

jacket – is described with small, rough marks. The line

between light and dark is almost ragged, as seen along

Hellboy’s arm and leg where it zigzags. These minor details

are not approachable using traditional cel-shading

techniques. In such an approach, this detail would have to be

described texturally, such that it would only work from

certain angles, or geometrically, which would increase the

model complexity by orders of magnitude. These limitations

combine to make a real-time approximation of Mignola’s

style intractable using these old techniques. New tools must

be developed.

While many NPR solutions have been image-based,

doing post-processing on 2D rendered images, we developed

a geometrically-based solution. We attempted to use a

combination of graftal-based detailing [Kowalski et al. 1999]

and fin-extrusion “sketchy outlining” [Loviscach 2005] to do

this. Graftals would be used to programmatically detail

otherwise smooth surfaces or shadows, while the outlining

will be used to draw illustrated edges. Graftals would also be

used to modify the edge between light and darkness along a

surface. Unfortunately, complexities with the Graftal model

of detailing arose during the project. Drawing a line

demarking shadow edges proved more difficult than

originally thought as well, resulting in several unsuccessful

attempts to generate shadow-bounding edges.

Figure 1: Still from the video game Okami.

Figure 2: Original illustration by Mike Mignola.

2. Related Work

Hertzmann and Zorin [2000] were interested in simulating

artistic shading and hatching in rendered images. In

“Illustrating Smooth Surfaces,” they analyzed both the

technical and stylistic approaches to shading used by artists –

in particular, by line-artists who created engravings or

woodcuts. By analyzing these pre-existing images,

Hertzmann and Zorin were able to develop new approaches

to shading, and development methods which, while not

strictly realistic, made it much easier for viewers to interpret

complex images. They determined that hatch curvature was

less useful for describing small details, but instead developed

techniques to overlay different directions of straight hatching

to describe changing or curving surfaces. They also

developed “Mach bands” and undercuts, techniques to

enhance the contrast between overlapping but similarly lit

areas on the same surface.

All of these techniques represent stylistic achievements.

They take advantage of optical illusions or confusion of the

viewer’s eye to simulate otherwise complex images.

Likewise, the use of non-realistic lighting techniques by

Gooch et al. [1998] allowed for a far greater apparent

dynamic range than a realistic lighting model would have.

This research combines to describe many situations in

which stylization is not only aesthetically pleasing, but also

conveys useful information. By studying artists rather than

physics, these researchers found novel ways to render

otherwise complicated subjects.

Several papers have described interactive methods of

generating artistic renders. Salisbury et al. [1997] developed

a technique for using a vector field and a vector-based

collection of brush strokes to generate images that appeared

hand-drawn. Their use of vector fields, albeit ones generated

by an artist, were a precursor to the direction fields of

Hertzmann and Zorin [2000]. The process of creating an

image using this technique relied on having an artist place

vectors along an image, and “color code” the image based on

which stroke would be used to draw it in.

Kalnins et al. [2002] continued with the interactive

approach, but shifted from placing brush strokes on an image

to placing them on a 3D model. While not real-time, the

combination of a surface shader and a lighting model

provided a complete package for controlling the artistic

appearance of an NPR system.

With the development of GPU-based rendering,

complex variants on traditional rendering techniques were

developed. McGuire and Hughes [2004] described a

technique to use the GPU to determine edge-features and

outlines, rendering them entirely using Vertex Buffer

Objects. Loviscach’s “Stylized Haloed Outlines on the GPU”

[2005] described a VBO-based GPU rendering technique for

outlined edges that also uses multiple passes and image-

based jittering to create a very sketchy appearance. (Figure

3)

Finally, Kowalski et al. [1999] described a technique to

approximate otherwise complicated appearances by stylizing

and abstracting them using “graftals”. These graftals are

small, easily modified pieces which can be used to draw fur,

tufts, or other surface detail on an otherwise simple model.

Figure 3: Haloed sketchy outlines. [Loviscach, 2005]

3. Implementation

We attempted to use four techniques to approximate

Mignola’s artistic style.

First, we outlined the models using the finning

technique described by McGuire and Hughes [2004].

Second, we used high-contrast lighting to give the same

inky shadows Mignola uses. This was done on the GPU,

using a vertex shader. We attempted to use a texture to

provide the impression of drawing in the fills with a marker,

but were unable to orient the textures properly without more

information on the GPU.

Third, we attempted to use graftals to simulate

otherwise invisible surface detail – pock marks, bumps, etc.

These were intended to be defined ahead of time, and will be

present both in shaded and lit areas. They will particularly be

used to define texture in large, well-lit areas.

Fourth, we attempted to use several techniques – most

notably graftals and textured outlines – to create complex

divisions between lit and shaded areas. The “zigzagging”

shadows seen in Figure 2, as well as other shading

techniques, were explored.

These techniques were applied to black and white

images, mimicking the look of an un-inked illustration by

Mignola.

3.1. Outlining

Outlining was executed using the Vertex Buffer Object based

GPU-accelerated technique described by McGuire et al.

[2004]. The model file is read into an Edge Mesh, in which

information about an edge in the model is encoded into

vertex position, color, and multitexture information.

In order to determine whether an edge in a mesh is an

outline edge, the normal vectors of the two facing faces must

be compared. If one face normal faces the camera and the

other does not, the edge between them is an outline edge.

While this technique only works with faces that are

guaranteed to be coplanar, this includes any triangular mesh.

We tested this technique on several OBJ files with success.

The relevant information can be encoded in several

ways. While Loviscach encoded the information in to several

floating-point values, rather than using the full 6-value

method, this was not useful for our method. The four-value

technique only worked when only edge-outlines were being

drawn. Since we were attempting to draw non-outline edges

along shadow boundaries, we had to include all 6 vector

values.

These 6 values are called v0, v1, v2, v3, n1, and n2.

Each edge in the mesh must be described using all 6 of these

values in the Edge Mesh. v0 and v1 are the positions of the

endpoints of an edge, v2 is a third point on one face that uses

the edge, and v3 is the position of the third point on the other

face. n0 and n1 are the normal vectors of v0 and v1,

respectively. The face normals of each of the faces sharing

the edge, nA and nB, can be calculated using v0-4 and n0-1.

(Figure 4)

Figure 4: v0, v1, v2, v3, define the relevant vertices, while

n0 and n1 define the relevant normals. nA and nB can be

calculated in the vertex shader using cross products.

[McGuire and Hughes, 2004]

Since OBJs are described by indexed vertices and faces,

we must iterate across the faces and store the implicitly

defined edges. Each edge will be defined twice (once by each

face which shares it), so we must protect against edge

duplication. Once the edges are extracted, we can define the

Edge Mesh.

Since we used VBOs to pass edge information to the

vertex program, we must encode edge information into a

single vertex structure.

When using VBOs, each vertex is described using an

array of floats – one array for each attribute of the vertex

being described. We used these attributes to encode edge

information – specifically, the MultiTexCoord attributes. We

encoded v0 and v1 into the Position and Color attributes, and

the remaining attributes into MultiTexCoord0-3. We called

this collection of edge-describing attributes packed into a

single vertex object an “Edge Vertex Object.”

Using only a vertex shader and a fragment shader, we

cannot create additional geometry on hardware. Thus, while

each Edge Vertex Object contains all necessary information

to create an edge quad, the edge shader can only do this if it

receives for “vertices” that it can transform into the corners

of the quad. This means each Edge Vertex Object (EVO)

must be duplicated four times – one for each corner.

In order to make sure each EVO is transformed to the

correct corner, we must include an indexing value. The first

corner is index 0, the second corner is index 1, etc. This

fourth value must be passed using an additional

MultiTexCoord attribute.

The vertex shader uses these attributes to transform the

vertices to the appropriate positions. To do this, use the

following vectors and values for them:

s0 = (MVP * v0).xy

s1 = (MVP * v1).xy

p = normalize(<s0.y – s1.y, s1.x – s0.x>)

s0 and s1 are the screen-space endpoints for the edge,

and p is a normalized vector perpendicular to s0 and s1. This

means the final position on one vertex in the vertex shader is:

Position = s0 + p if i = 0

 s1 + p if i = 1

 s1 - p if i = 2

 s0 - p if i = 3

If the edge is not an outline, its position is transformed

to behind the clipping plane. This also culls it from the

fragment shader, preempting the need for any additional

culling.

Stroke information and appearance can be passed as a

texture, and applied to the strokes. This can be used for a few

purposes. Most obviously, and as used previously, it can be

used to define a stylized stroke appearance.

3.2. Shading

On close examination, in all but straight black-and-white

outline illustration, Mignola’s drawings have subtle gradients

found in them. These gradients add a little depth to even the

well-lit areas of the drawing. While in Mignola’s illustration,

these are often abstracted and simplified gradients, such

simplification is outside the scope of this paper. To simulate

the subtle shading, we simply implemented a clamped and

modified shading algorithm.

For the large “pools of shadows” that cover the models,

we simply monitored the intensity of light in the fragment

shader. If intensity was below a constant, α, the fragment

color was set to black. Otherwise, it was modified using the

following equation:

Color = ((i*0.5)*(i*0.5)+0.75) * White

Where i was the intensity. Using this equation, the

gradient range was narrowed and moved, from ranging from

0.5 to 1, to ranging from 0.75 to 1, and with a steeper falloff.

This provided a subtler gradient than the default values.

We experimented with using a texture to draw the black

shadows, scanned from large fills in Mignola’s drawings.

While the textures looked extremely hand drawn and worked

in still frames, we were unable to get them to animate

properly without information on surface orientation.

3.3. Surface Graftals

We attempted to implement graftals, as described by

Kowalski et a. [1999], but discovered several pitfalls which

prevented them from being used.

The findings of Hertzmann and Zorin [2000], and the

techniques they used to generate a “direction field” along the

surface of the model, were similar to the problems we faced

while trying to develop graftals. We had expected to be able

to avoid the problems of surface-orientation by using an

illustrative technique – the assumption being that since the

result was so stylized, no orientation of graftals would be

necessary. Unfortunately, this was not the case.

Close examination of Mignola’s work showed that the

small marks used for surface details were not at all randomly

oriented or distributed – while lacking depth, they all

followed the 2D orientation of the surface they were placed

along. This is most easily seen in Figure 4. The scale

“graftals” placed along the tail of the mermaid are oriented in

2D to match the curve of the tail. This orientation means

graftals must be generated based on surface geometry.

We then attempted to use an approach more directly

related that that outlined by Hertzmann and Zorin. We tried

generating graftals at edges, parallel to the screen but with

one edge set to an edge on the mesh. Unfortunately, the

orientation to the screen made self-intersection a significant

problem. Without any time-consuming self-intersection

prevention, there was no way to guarantee surface details

wouldn’t disappear into geometry – especially with randomly

placed graftals.

Due to scope and time constraints, we were unable to

attempt other solutions.

3.4. Shadow Outlining

As with surface graftals, shadow outlining proved more

difficult than originally expected.

Originally, we had intended to use edge-aligned

graftals, as described above, to provide variation along

shadow edges. The self-intersection problems of surface-

oriented graftals, however, were also a problem with

shadow-bounding graftals.

We moved on to attempt to use textured strokes to

define edges. While self-intersection was still an issue, it was

more manageable with controlled stroke-width.

To determine if an edge was shadow-bounding, we

simply used the same dot product used in the rendering

equation to calculate light intensity at a point. As with the

intensity clamping used for the shading, we used α as a

cutoff. If the intensity on one edge-connected face was

greater than α and the intensity on the other was not, that

edge was a shadow-bounding edge. Intensity was calculated

using the usual formula:

Intensity = dot(light direction, face normal)

The problems arose with actually finding a shadow-

bounding edge. With an outlined edge, there is no

interpolation between points – that is, the outline will always

be made of discrete, straight line segments. But with shading,

there is interpolation between vertices, and even texture

lookups to modify the vertex normal if normal mapping is

used. All of this additional normal information is only

accessible to the fragment shader. Since we did all

implementation of the stroke-generation on the vertex

shader, there was no way to get shadow-boundaries smoother

than the edges of the triangulated mesh. In some cases,

depending on triangulation, this led to a zigzagging stroke

down the front of the mesh, which did not actually follow the

shading.

Without any sort of interpolation across triangles, there

was no way to avoid this jaggedness.

4. Results

Edge stroking has been implemented on the GPU using

the VBO solution described above. Any OBJ model can be

loaded into an Edge Mesh, passed to the GPU in a VBO, and

rendered with all edges as strokes. With outline-culling

implemented, only the outline edges of the model are drawn.

These strokes have UV coordinates defined, and can be

drawn with textured strokes. (Figure 5)

The “fill” of the model is a separate render pass with a

different GLSL shader program. The black shadows are

shaded using the fragment shader, as described above in

section 3.2. This shading is placed behind the strokes.

(Figure 6)

Attempts to render surface-graftals failed, due to the

difficulty of placing graftals along a surface without using

any direction field detection algorithms and without self-

intersection problems.

Attempts to render shadow-bounding strokes failed as

well. While the narrowness of the strokes prevented any

significant self-intersection, the inability to get any finer

resolution than the triangle edges also led to zig-zagging

shadow boundaries.

Figure 5: At top, all edges are drawn. At bottom, only outline

edges are drawn.

Figure 6: An elephant model is Shaded using a combination

of stroked outlines and shaded fills. Gradients are used to

include subtle shape cues.

In spite of the problems faced, we were able to develop

an interesting-looking real-time shader which is comparable

to the style of Mike Mignola’s illustrations. We implemented

an entirely GPU-based rendering process to outline and

shade any OBJ model loaded into the program. While the use

of an Edge Mesh leads to approximately 9x the number of

faces as a non-outlined model [McGuire and Hughes, 2004],

the use of VBOs provides an offsetting efficiency, which

allows even a 100,000 triangle model to run in real-time on a

GeForce 6600 256 MB graphics card using GLSL. We also

were able to pinpoint issues and concerns in more

artistically-based NPR techniques – specifically, the

importance of both gradient fills and direction fields.

5. Future Work

The problems faced by the researchers pointed out several

avenues of approach to further work in the field of

stylistically-targeted NPR systems. First and foremost, a

system to preprocess a model and develop a direction field in

real-time is a must. Any sort of brush or stroke-based

rendering, including our original idea of using surface-based

graftals, would need direction information on a per-vertex

basis.

Modification of the GPU outlining algorithm to include

the ability to move edges to interpolate across triangles

would be valuable as well. This would enable exploration of

non-edge outlines which follow shadow boundaries, surface

orientation, etc. without having jagged, zigzagging paths.

Exploration of other, non-physically-based shading

models would benefit all NPR techniques greatly. Our

studies of illustrations showed that shading often follows the

2D outline of an object, rather than its curvature or surface

orientation. This flies in the face of traditional graphical

lighting models. Any attempts to replicate this on a GPU

would go a long way towards generating convincingly

illustrative and artistic real-time NPR techniques.

The development of GPU-based geometry shaders will

make the techniques used to create edge fins much simpler in

the future. While the researchers did not have access to an

NVIDIA 8800 graphics card, needed to use the new

geometry shaders, future researchers could use the geometry

shader to generate the additional vertices instead of passing

in four copies of the EVO. This would cut the number of

EVOs to one fourth of the number used in our version,

making this method that much more efficient.

The use of VBOs precludes traditional vertex-based

animation techniques. While the VBOs could be updated

every frame, this would eliminate the efficiency offered.

Several techniques have recently been used to “fake”

animating VBOs, however, which could be applied to our

techniques, allowing them to be used on changing models.

References

Jan Fischer, Dirk Bartz and Wolfgang Straßer, “Artistic

Reality: Fast Brush Stroke Stylization for Augmented

Reality,” SIGGRAPH 2005.

Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen,

"A Non-Photorealistic Lighting Model for Automatic

Technical Illustration," SIGGRAPH 1998, pp. 447 – 452.

Michael Haller and Florian Landerl, “A Mediated Reality

Environment using a Loose and Sketchy rendering

technique,” ISMAR 2005.

Aaron Hertzmann and Denis Zorin, "Illustrating Smooth

Surfaces," SIGGRAPH 2000, pp. 517 - 526.

Robert D. Kalnins, Lee Markosian, Barbara J. Meier,

Michael A. Kowalski, Joseph C. Lee, Philip L. Davidson,

Matthew Webb, John F. Hughes and Adam Finkelstein,

“WYSIWYG NPR: Drawing Strokes Directly on 3D

Models,” SIGGRAPH 2002.

Michael A. Kowalski, Lee Markosian, J. D. Northrup,

Lubomir Bourdev, Ronen Barzel, Loring S. Holden and John

F. Hughes, "Art-Based Rendering of Fur, Grass, and Trees,"

SIGGRAPH 1999, pp. 433 - 438.

Jörn Loviscach, “Stylized Haloed Outlines on the GPU.”

Morgan McGuire and John F. Hughes, “Hardware-

determined edge features,” 2004.

Michael P. Salisbury, Michael T. Wong, John F. Hughes and

David H. Salesin, "Orientable Textures for Image-Based

Pen-and-Ink Illustration," SIGGRAPH 1997, pp. 401 - 406.

Figure 7: High-poly render of the Venus model using the

Mignola shader.

Figure 8: High-poly render of the Ataneal model using the

Mignola shader.

