
Real-Time Particle System Control

Brian D. Strege

Abstract

This project aims to accelerate various particle system effects so
that they may be used in a real-time environment. The particle sys-
tem computations will be executed on the GPU so as to maintain
high performance, and various approximation algorithms will be
used to try and improve the efficiencies of the implementations of
reasonably complex particle system effects. Such effects include
the N-Body problem from physics, which is essentially a grav-
ity model, as well as attempting to force particle system motion
through pre-defined keyframes.

Keywords: particle system, GPU, approximation

1 Introduction

The purpose of this project is to be able to see more interesting
effects produced with particle systems in a real-time environment.
Particle systems are commonly used to render phenomena such as
fire, smoke and water in real-time situations to great effect, whereas
more interesting methods of controlling particle systems such as
forcing them through specified keyframes or displaying massive
particle interaction can be far too computationally intensive to use
in a real-time environment. Certainly such effects as simple parti-
cle collision have been accomplished before in an efficient matter,
but there many particle effects that have not been adapted in an ef-
ficient manner. These include the repulsion and/or attraction of all
particles in a system to model things such as gravity or magnetism,
as well as setting the desired result and/or intermediate steps of a
particle system by way of keyframes.

Initially the goal will be to mimic an established method for per-
forming particle system computations on the GPU, as the fastest
implementations of these systems will take advantage of graph-
ics hardware so as to both exploit its massive hardware capacity
as well as to avoid any potential data bottleneck from the CPU.
Once this has been completed, a series of traditionally computation-
ally intensive particle system effects such as particle attraction and
keyframe control will be implemented, and then various approxi-
mation methods with which to improve their performance will be
applied. Specifically in terms of the particle attraction problem, the
Barnes-Hut algorithm [Barnes and Hut 1986] has been explored as
a method of approximation for this effect.

2 Related Work

In the literature for particle systems, there is a divide between pa-
pers that are trying to accomplish some effect in a particularly re-
alistic way, and papers that are trying to accelerate existing effects
in order to make them palatable to real-time systems. Many of the
most interesting effects – as could be expected – come from the
former section of papers, where the concern lies primarily on the
visual appeal of the results rather than the performance with which
these results were achieved. That is not to say they did not care
at all about performance, but it was certainly secondary to quality.
The papers that were more concerned with performance either at-
tempted to figure out ways to perform approximate calculations for
existing particle system effects, or to perform these computations
on different hardware, i.e. by moving the computations from the
CPU to the GPU.

There are a few very interesting papers that can be logically laid
out in a chronological series [Treuille et al. 2003; McNamara et al.
2004; Wojtan et al. 2006] which discuss very rigid control of par-
ticle systems in order to achieve high-quality effects. They use a
series of keyframes to allow an animator to control various interme-
diate stages of display for various particle systems, while retaining
those systems’ inherent properties be they that of smoke, water or
cloth. They obtain the best sequence of motion mathematically by
generating an objective function which is intuitively the measure
of how incorrect a given effect looks, and minimizing that objec-
tive function. Given all of the variables involved, this can be very
computationally intensive; far too slow to use in a real-time system.
While later papers in this series discuss ways of improving the per-
formance using what is known as the adjoint method, they remain
firmly in the realm of non-real-time systems. Still, these papers pro-
vide good insight as to how one might go about enforcing control
over particle systems, and if raytracing has taught us anything it is
that looking at the brute-force solution to a problem can be a good
place to start.

Essential work has also been done in the realm of moving particle
system computations off of the CPU, and onto the GPU to take ad-
vantage of its natural parallelism for the inherently parallel nature of
many particle system effects. Also, executing particle system com-
putations entirely on the GPU eliminates any potential bottleneck
from the bus to the CPU, which can also improve performance.
There have been various methods [Kipfer et al. 2004; Kolb et al.
2004] developed for using the GPU to handle particle system com-
putation, and they certainly will be of great use in this project.

Finally, there are a few very recent papers available describing
how to perform a specific particle system effect both efficiently
and realistically. These effects include splashing water [Kim et al.
2006] and stiffness in mass-spring systems [Volino and Magnenat-
Thalmann 2006].

3 Implementation

3.1 N-Body Problem

The model effect that this project will be exploring is a simple grav-
ity system of particles, where each particle contains its own mass
and acts on all other particles in the system by way of the well-
established Newtonian laws of gravity. In the realm of physics, this
is known as the N-body problem. To simulate the N-Body problem,
the following equations must be executed at every time step, where
the duration of the time step can be arbitrarily chosen.

Fx =
Gmamb

r2

(
xb − xa

r

)
(1)

Fy =
Gmamb

r2

(
yb − ya

r

)
(2)

Fz =
Gmamb

r2

(
zb − za

r

)
(3)

where r is the distance between particles. After all three dimensions
of the force between two particles a and b are computed as shown



in equations 1, 2 and 3, the change to a particular particle’s velocity,
dv, must be computed. We will use Newton’s second law for this:

F = ma (4)

Substituting dv/dt for a, and solving for dv, we arrive at the fol-
lowing equation:

dv =
Fdt

m
(5)

where dt is the time step. While these computations seem simple,
they can become exceedingly difficult if the amount of particles
increases greatly. The reason for this is that each and every pair of
particles must execute all of these equations at each time step. For
n particles, that will be n2 times these equations must be computed
per time step.

3.2 GPU Particle System

As stated earlier, there is a lot of highly relevant work already in
existence to put the computations required in particle systems onto
the GPU. This project will base its GPU solution on the work done
by Kipfer et al. in regards to their GPU-based particle engine named
UberFlow [Kipfer et al. 2004]. In their paper, they lay out a series
of events that must happen at every time step in order to achieve
their desired particle system effects, which are simply motion and
collisions. The events they describe are as follows:

• Emission

• Collisionless motion of particles

• Sorting of particles

• Pairing of collision partners

• Collision response

• Enforcement of boundary conditions

• Particle rendering

The UberFlow system handles collisions in a way that is completely
satisfactory for the goals of this project. Therefore, the part of this
event pipeline that we will be modifying will come just before the
sorting of particles, since UberFlow only sorts the particles for pur-
poses of collision. A stage must be added to perform the N-Body
problem, which will update the velocities of all the particles. Since
we will want to then use this updated velocity to move the particles
around, the most logical place for this new stage will be just before
the collisionless motion of particles

Also, we will slightly modify the way in which UberFlow stores
the particles. Currently, a 2D RGBA texture is used to store parti-
cle positions, with the RGB components corresponding to the XYZ
values of these positions, and the A component corresponding to
the time in which the given particle will be released. We are go-
ing to simplify this by treating all particles as if they had always
existed, thereby removing the need for the emission stage of their
pipeline. This will make the system now require a one-time ini-
tialization. Finally, we will use the A component of the texture to
store the associated mass of the particle. Our system will also use a
separate texture to store the velocities of the particles. The updated
UberFlow events are as follows:

• N-Body velocity computation

• Collisionless motion of particles

Figure 1: Partitioning of a 2D particle scene using the Barnes-Hut
algorithm.

• Sorting of particles

• Pairing of collision partners

• Collision response

• Enforcement of boundary conditions

• Particle rendering

3.3 Inapplicable Parallel Solution

Now that the location in the event pipeline has been determined
for the execution of the N-Body velocity computation, we must de-
termine how exactly this problem would be solved. Since GPUs
are massively parallel pieces of hardware, it seemed to make sense
to use a common technique for performing N-Body computations
known as the Barnes-Hut algorithm [Barnes and Hut 1986]. This
algorithm takes a 3D world full of bodies, and continually partitions
the world down into octants until every individual partition of the
world contains either one or zero bodies. It creates an octtree while
performing this partitioning, and any time a partition contains zero
bodies it is thrown away. This is easier to visualize in 2D, where a
quadtree would be created. As can be seen in Figure 1, the scene
is cut further and further down into quadrants until all six bodies
shown reside in their own partition.

Once this octree (or in the case of 2D, quadtree) has been created,
the granularity at which the Barnes-Hut algorithm can choose to
compute the N-Body forces can be varied throughout the world.
Large numbers of bodies that reside in large areas of space can have
their positions and masses averaged to simplify force computation
for a far off body by treating that group as one large entity.

Unfortunately, this algorithm does not lend itself well for the pur-
poses of this project. First, this algorithm is primarily used for real-
world computation of planetary systems, which are much different
than the gravity systems that are likely to be employed in a real time
application such as a video game. In actualy planetary systems,
there may be many distinct groups of bodies – such as galaxies –
that would fit well into the Barnes-Hut algorithm’s method of aver-
aging together large groups of particles that are physically close to
each other. In video games on the other hand, the large amount of
particles are likely to all be very close together and quite chaotic,
leaving no clear groups of bodies to be averaged together.



Figure 2: N-Body computation with generated mipmap. The blue arrow indicates the mipmap generation from the position and mass texture.
The green arrows indicate all of the force computation required for one particular particle. The red arrow indicates the update to the velocity
texture for the same particle.

Also, since this algorithm would be running on the GPU, it is im-
portant to note that there is no easy way of creating a new octree
for the particle system at each time step, which is most likely each
frame. Seeing as how there are many drawbacks to the Barnes-Hut
algorithm, it has been abandoned as the algorithm to approximate
the N-Body problem on the GPU.

3.4 Mipmap Solution

Keeping in mind the strengths and weaknesses of the Barnes-Hut
algorithm, we have come up with an algorithm that should run quite
well on the GPU, as well as significantly reduce the amount of com-
putations required for the N-Body problem. Note that when we
compute the forces in the N-Body problem, the texture that stores
the positions and masses of the particles has not been sorted. We
will generate a mipmap of this texture, and use it to approximate
the forces of the N-Body problem. In Figure 2, a 16x16 texture is
using a 2x2 texture from its mipmap set to compute the change in
velocity for one particular particle. In this example, if the mipmap
were not used it would require 256 force computations to determine
the change in velocity for a single particle – now it takes just 4.

This method does require the overhead of computing the mipmap
set for position and mass texture at each time step, however modern
GPUs are designed to do this very efficiently. After the mipmap
is created, it greatly reduces the amount of computation required
for the problem. If there are n particles in a scene, and the mipmap
used contains m elements, the amount of computation now required
is nm, instead of n2.

4 Results

At this time a GPU implementation of the system described has
not yet been created. However, the N-Body portion of the system
described has been “emulated” on the CPU, performing the same
calculations as the GPU version would, except it directly calcu-
lates the mipmap size desired. Running the brute-force standard
N-Body problem on the CPU with 65536 particles – a 256x256
texture worth – the test system is running at around 8 frames per
second. When we employ the mipmap method using a size of 2x2
for the mipmap, the test system runs at around 28 frames per sec-
ond. This increase makes the mipmap method look quite promis-
ing, especially considering that graphics hardware will be able to

compute mipmaps in a fraction of the time that a CPU based imple-
mentation can. The test system is a 3.2GHz Pentium 4 with 2GB of
RAM.

5 Future Work

The first thing that is necessary before considering any other fu-
ture work is to get a GPU based version of the described solution
implemented, so performance can be tested. After that, a consider-
ation would be to model magnetism in addition to gravity, so some
particles attract each other and repel others.

References

BARNES, J. E., AND HUT, P., 1986. A hierarchical o(nlogn) force
calculation algorithm.

KIM, J., CHA, D., CHANG, B., KOO, B., AND IHM, I. 2006.
Practical animation of turbulent splashing water. In SCA ’06:
Proceedings of the 2006 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation, Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, 335–344.

KIPFER, P., SEGAL, M., AND WESTERMANN, R. 2004. Uber-
flow: a gpu-based particle engine. In HWWS ’04: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graph-
ics hardware, ACM Press, New York, NY, USA, 115–122.

KOLB, A., LATTA, L., AND REZK-SALAMA, C. 2004. Hardware-
based simulation and collision detection for large particle
systems. In HWWS ’04: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
ACM Press, New York, NY, USA, 123–131.

MCNAMARA, A., TREUILLE, A., POPOVIĆ, Z., AND STAM, J.
2004. Fluid control using the adjoint method. In SIGGRAPH
’04: ACM SIGGRAPH 2004 Papers, ACM Press, New York,
NY, USA, 449–456.

TREUILLE, A., MCNAMARA, A., POPOVIĆ, Z., AND STAM, J.
2003. Keyframe control of smoke simulations. In SIGGRAPH
’03: ACM SIGGRAPH 2003 Papers, ACM Press, New York, NY,
USA, 716–723.



VOLINO, P., AND MAGNENAT-THALMANN, N. 2006. Simple lin-
ear bending stiffness in particle systems. In SCA ’06: Proceed-
ings of the 2006 ACM SIGGRAPH/Eurographics symposium on
Computer animation, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 101–105.

WOJTAN, C., MUCHA, P. J., AND TURK, G. 2006.
Keyframe control of complex particle systems using the ad-
joint method. In SCA ’06: Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland,
15–23.


