CMSC 635

Sampling and Antialiasing

Abstract Vector Spaces

Addition

$$-C = A + B = B + A$$

$$-(A + B) + C = A + (B + C)$$

- given A, B, A + X = B for only one X
- Scalar multiply

$$-C = aA$$

$$-(a+b) A = a A + b A$$

Abstract Vector Spaces

Inner or Dot Product

$$-$$
 A • A ≥ 0; A • A = 0 iff A = 0

$$-A \cdot B = (B \cdot A)^*$$

Vectors and Discrete Functions

Vector	Discrete Function
V = (1, 2, 4)	$V[I] = \{1, 2, 4\}$
a V + b U	a V[I] + b U[I]
V • U	Σ (V[I] U*[I])

Vectors and Discrete Functions

• 2^t in terms of t^0 , t^1 , $t^2 = [1,.5,.5]$

Vectors and Discrete Functions

2^t in terms of t⁰, t^{0.5}, t¹, t^{1.5}, t²

Vectors and Functions

Vector	Discrete	Continuous
V	V[I]	V(x)
a V + b U	a V[I] + b U[I]	a V(x) + b U(x)
V • U	ΣV[I] U*[I]	$\int V(x) U^*(x) dx$

Vectors and Functions

2^t projected onto 1, t, t²

Function Bases

- Time: δ(t)
- Polynomial / Power Series: tⁿ
- Discrete Fourier: e^{i π t K/N} / √ 2 N
 - K, N integers
 - -t, K \in [-N, N]
 - (where $e^{i\theta} = \cos \theta + i \sin \theta$)
- Continuous Fourier: e^{i ω t} / √ 2π

Fourier Transforms

	Discrete Time	Continuous Time
Discrete Frequency	Discrete Fourier Transform	Fourier Series
Continuous Frequency	Discrete-time Fourier Transform	Fourier Transform

Convolution

- $f(t) g(t) \Leftrightarrow F(\omega) * G(\omega)$
- $g(t) * f(t) \Leftrightarrow F(\omega) G(\omega)$
- Where f(t) * g(t) = ∫ f(s) g(t-s) ds
 - Dot product with shifted kernel

Filtering

- Filter in frequency domain
 - FT signal to frequency domain
 - Multiply signal & filter
 - FT signal back to time domain
- Filter in time domain
 - FT filter to time domain
 - Convolve signal & filter

Sampling

Multiply signal by pulse train

Aliasing

 High frequencies alias as low frequencies

Aliasing in images

Original

Rendered

AN HONORS UNIVERSITY IN MARYLAND Loss of detail

Antialiasing

- Blur away frequencies that would alias
- Blur preferable to aliasing
- Filter kernel size
 - IIR = infinite impulse response
 - FIR = finite impulse response
 - Windowed filters

Ideal

- Low pass filter eliminates all high freq
 - box in frequency domain
 - sinc in spatial domain (sin x / x)
 - Possible negative results
 - Infinite kernel
- Exact reconstruction to Nyquist limit
 - Sample frequency ≥ 2x highest frequency
 - Exact only if reconstructing with ideal lowpass filter (=sync)

Reconstruction

- Convolve samples & reconstruction filter
- Sum weighted kernel functions

Filtering & Reconstruction

MARYLAND

Filtering, Sampling, Reconstruction

Continuous Display

UNIVERSITY

Combine Filter & Sample

- Can combine filter and sample
 - Evaluate convolution at samples

Analytic Area Sampling

Compute "area" of pixel covered

•	Box	in	spatial	domain	
---	-----	----	---------	--------	--

- Nice finite kernel
 - easy to compute
- sinc in freq domain
 - Plenty of high freq
 - still aliases

Analytic higher order filtering

- Fold better filter into rasterization
 - Can make rasterization much harder
 - Usually just done for lines
 - Draw with filter kernel "paintbrush"
- Only practical for finite filters

- Numeric integration of filter
- Grid with equal weight = box filter
- Other filters:
 - Grid with unequal weights
 - Priority sampling
- Push up Nyquist frequency
 - Edges: ∞ frequency, still alias

- Numeric integration of filter
- Grid with equal weight = box filter
- Other filters:
 - Grid with unequal weights
 - Priority sampling
- Push up Nyquist frequency
 - Edges: ∞ frequency, still alias

- Numeric integration of filter
- Grid with equal weight = box filter
- Other filters:
 - Grid with unequal weights
 - Priority sampling
- Push up Nyquist frequency
 - Edges: ∞ frequency, still alias

- Numeric integration of filter
- Grid with equal weight = box filter
- Other filters:
 - Grid with unequal weights
 - Priority sampling
- Push up Nyquist frequency
 - Edges: ∞ frequency, still alias

Adaptive sampling

Vary numerical integration step

 More samples in high contrast areas

 Easy with ray tracing, harder for others

Possible bias

Stochastic sampling

- Monte-Carlo integration of filter
- Sample distribution
 - Poisson disk
 - Jittered grid
- Aliasing ⇔ Noise

Resampling

Image Pixels

Reconstruction Filter

Continuous Image

Sampling Filter

Resampled Image Pixels ...

AN HONORS
UNIVERSITY

Resampling

Image Pixels

Resampling Filter

Resampled Image Pixels

