
Accelerated Ambient Occlusion Using Spatial Subdivision Structures
Chris Wassenius

Abstract

Ambient Occlusion is a relatively new method that
gives global illumination like results. This paper
presents a method to accelerate ambient occlusion
using the form factor method in Bunnel [2005] as
well as utilizing the fact that ambient occlusion is a
function of nearby geometry only. The proposed
method combines existing ideas in order to
accelerate ambient occlusion calculations by using
a spatial subdivision structure (an octree) and
selective sampling.

Keywords: ambient occlusion, ambient obscurance,
global illumination, shadowing techniques, spatial
data structures

1 Introduction

Global illumination in computer graphics is a key
factor in producing realistic scenes. However, the
complexity of a true radiosity approach is still too
time consuming for modern technology. Ambient
Occlusion is a technique that generates global
illumination effects (soft shadowing, color bleeding)
without taking into account an actual light source.
Instead, the ambient term of the standard lighting
equation is modified as a function of the local
geometry of a scene. That is, the ambient term for a
point on a surface is determined by how occluded
that point is from other local surfaces in the scene
[Iones et al. 2003]. Ambient Occlusion simulates
global illumination fairly well considering its
relative simplicity. Ambient Occlusion calculations
for the most part have remained a non-real time
process however. The technique presented
accelerates the occlusion calculations by using a
hierarchical spatial subdivision system.
Hierarchical spatial subdivision systems have been
used to speedup radiosity, ray tracing, occlusion
culling, and many other graphics-based problems.

2 Related Work

Goral et al. [1985] first introduced the concept of
radiosity, and brought global illumination effects to
computer graphics. Due to radiosity's complexity
various acceleration methods were later
introduced. One such method is to store patches in

Figure One: Ambient occlusion and diffuse
lighting.

a hierarchy [Hanrahan et al. 1991]. The idea, for
example, is that instead of calculating the amount
of light coming from a distant wall in a room by
finding the form factor for each patch that is far
way, it is possible and nearly equivalent to group
those distant patches together (average their
radiosities) and compute the form factor between a
large patch (the entire far wall) and the receiving
patch in question. This significantly reduces the
amount of form factor calculations between
patches, yielding a linear solution, rather than a
quadratic solution, to the problem. However, the
radiosity method is still exceptionally time
consuming, and thus other methods that attempt to
mimic global illumination have been introduced.

The idea of ambient occlusion was introduced by
Zhukov et al. [1998] and as mentioned earlier gives
global illumination-like effects at a much lesser
computational cost. A patch's ambient term is
modified based on how open that patch is with
respect to other nearby patches. If a patch is fully
open its ambient term is multiplied by 1, otherwise
its ambient term is multiplied by a value between 0
and 1. Later, Iones et al. [2003] proposed storing
the resulting ambient term computations in light
maps rather than patch vertex attributes. This
allows a scene to be rendered with only the
original polygons, independent of the patches that
were used in the occlusion calculation. Also,

Méndez et al. [2003] added color bleeding support
to ambient occlusion with no extra computational
cost.

In most production renderers, such as Renderman,
ambient occlusion is now supported, and
implemented by ray tracing [Christensen 2002]. As
an extension the normal of a patch is bent based on
the average direction that a patch is open or not
occluded. This bent-normal is then used when
looking up data from an environment map. This
typically gives more interesting and realistic
results.

Recently, real-time, or close to real-time, ambient
occlusion results have been achieved with the help
of the latest graphics hardware [Bunnel 2005]. The
idea is to create surface elements out of a scene 's
polygonal data, and to compute the shadowing of
these surface elements onto each other using a
typical form factor-like equation. A Surface element
is defined as an oriented disk, with a surface
position, normal, and area. Every vertex in the
polygonal scene, has a corresponding surface
element. Similar to radiosity's hierarchical
clustering technique [Hanrahan 1991], surface
elements are stored in a hierarchy such that when
computing the shadowing from far away elements,
one large surface element may be used rather than
computing the shadowing from every far away
surface elements. Fragment shaders are used by
the GPU with this method.

The benefit of using the form factor approach,
rather than ray tracing to determine the visibility of
an element is that ray tracing requires many
samples to sufficiently represent the total occlusion
value. The form factor approach on the other hand
mimics computing the visibility of an element by
using the areas of the occluders. So while ray
tracing could utilize a spatial structure for
determining local visibility, the method suffers from
the fact that many rays are required.

3 Method

The proposed method is to accelerate the ambient
occlusion calculation for a scene, by utilizing the
fact that the ambient occlusion for an element is
only a function of the nearby geometry in the scene
with respect to that element. The method
introduced uses Bunnel's [2005] idea of surface
element discs and form factor-like shadowing
ideology as well as Iones et al. 's [2003] idea of
neighboring geometry.

Ambient occlusion as first introduced by Zhukov
[1998] was a function of just that, nearby geometry,

however many ambient occlusion techniques, such
as the real-time method introduced by Bunnel
[2005], seem to neglect this fact to an extent.
Shadows cast from distant elements on a receiving
element are lessened considerably by how far the
occlusion elements are from the receiving element
in question. This is represented in the form-factor
equation. Where the form-factor between one
element and another is:

A cos ӨE cos ӨR

 ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ (1)
π r2 + A

Where A is the area of the occluder, £E is the
angle between the occluder's normal and the
vector between the occluder and the element, £R

is the angle between the element's normal and the
vector between the element and the occluder, and
r is the distance between the occluder's center and
the element's center. This is illustrated in figure
two.

Figure Two

Based on this, while the occlusion is more so a
function of nearby geometry, it is still represented
as a function of the entire geometry in the scene.
The occlusion from any distance from the element
in question is still being computed. By enforcing a
restriction on the distance in which an object can
occlude or shadow another object, classic spatial
subdivision techniques can be employed to
accelerate the overall ambient occlusion
calculation. Bunnel's [2005] method does use a

 Receiving surface
 element

Occluding
surface
element

 ӨR

ӨE

Accelerated Ambient Occlusion Using Spatial Subdivision Structures
Chris Wassenius

hierarchical clustering technique which in effect
does support the notion of locality as, occlusion is
calculated only in full for a limited range, while the
occlusion from further away elements is grouped
and approximated. However the memory required
to store multiple levels of surface elements is
undesirable. The method presented in this paper
focuses and examines the results of having a limited
distance or cutoff for ambient occlusion, and the
subsequent benefits.

Acceleration based on locality can be achieved by
storing a scene in an octree. An octree was chosen
due to its simplicity and applied application.
Surface elements are composed of the scene's
vertex data, and thus each surface element is only
located at a specific position. Therefore when
inserting surface elements into an octree, there is
never a case where an element is located in more
than one node in the tree, as would occur when
inserting polygons into the tree. This is a common
downside to the spatial uniformity of octree nodes
when inserting polygons, as polygons must either
be represented in more than one node, or must be
dynamically subdivided. Although an octree risks
the case of being unbalanced, this is not a concern
when calculating ambient occlusion, as rejecting
nodes is not an expensive operation with respect to
the form-factor calculations that are required when
computing ambient occlusion. However, an issue
when using an octree, particularly if the ambient
occlusion implementation is using the GPU, is that
an unbalanced octree wastes valuable memory
storage. In this case a more balanced structure,
such as a kd-tree would be more suitably. On the
other hand, for real-time purposes and with
applications with dynamic environments, a kd-tree
would be harder to maintain than a more general
structure, such as an octree.

Surface elements should be stored in an octree
such that there are relatively few surface elements
per octree node, with respect to total amount of
surface elements in the scene. The implementation
used for this paper restricted a nodes capacity to
10 surface elements when handling scenes of
100,000 to 300,000 surface elements. This is to
ensure that the ambient occlusion algorithm can
reject as many surface elements as possible when
calculating the occlusion for an element.

With the surface elements stored in an octree (see
figure three), only the occlusion from surface
elements at nearby nodes of the octree are
calculated. When calculating the occlusion for an
element, the tree is traversed from the top down. A
leaf node's surface elements are only included in a
receiving elements occlusion calculation if and only

if the leaf node (a cube) they are in, is considered
local to the receiving element. Likewise, a node is
only traversed downward to its children if the node
is near the receiving element. An exception to this,
is if the receiving element is itself in one of the
node's children. The range of what is considered
nearby or local to a receiving surface element is
flexible. For ideal results however, the range
should be proportional to the size of objects in the
scene. Iones et al. [2003] recommend the range
cover 10 to 100 surface elements.

Figure 3: Scene's surface elements are
stored in an octree.

Further use of the octree structure can accelerate
the ambient occlusion calculation by examining the
definition of ambient occlusion, and subsequently
the form-factor equation. The occlusion for a
surface element is a function of the hemisphere
oriented above the surface normal of the element.
Only the surface elements located in the
hemisphere of the normal contribute to the
receiving element's occlusion. Based on this, it is
only necessary to traverse a node in an octree if it
is close to the receiving element and also if the
node is located in the hemisphere of the receiving
element's normal. Testing if a node is in the normal
oriented hemisphere can be done by simple dot
product tests on the bounding cube of the node.
For all eight corners of the bounding cube,
equation two can be applied.

 if EN ● V < 0; reject (2)

If the test rejects for all eight corners, the bounding
cube, and all of its subsequent children, are not in
the hemisphere of the receiving element.

The hemisphere test contributes to the acceleration
process the most when large ambient occlusion
cutoff ranges are used. Since the test can eliminate
more surface elements which the locality test does
not eliminate.

Figure 4: Two-dimensional depiction of
hemisphere test. A receiving element's occlusion
value is only affected by the elements of nodes in

the hemisphere oriented around its surface normal.
Nodes colored red are not traversed due to this.

Each calculated occlusion value can be stored
directly as a vertex attribute. This works nicely
since every surface element corresponds to a
vertex. However, since the number of surface
elements is no greater than the number of verticies
the quality of the results is greatly reduced in areas
of little geometry.

Due to time constraints and simplicity, the
implementation presented in this paper was done in
software on the CPU, rather than hardware.
However, despite this the acceleration gained is
equally applicable if the GPU was used.

4 Results

By limiting the range of occlusion, the acceleration
gained was significant, as seen in Figures five and
six. Also, by comparing the following pictures, it

can be seen that occlusion can be accurately
represented even with a tight limit on its range.
Indeed, as by definition, the ambient occlusion of a
point is most greatly impacted by the local
geometry around that point. The limit on the range
of ambient occlusion is also not obvious and
distracting, as the form-factor equation (equation
1) is a quickly falling, but smooth function. It is
also important to note that scenes with no limit on
the occlusion range, appear darker, since the
likelihood of over shadowing increases. Multiple
passes of the algorithm would need to be run to
remedy this issue [Bunnel 2005].

The hemisphere test in itself caused moderate
acceleration. As stated earlier, the acceleration
gained directly from the hemisphere test is related
to the range used for occlusion. This is the case
since, in theory, the hemisphere test rejects (does
not traverse) at a maximum, half the nodes that the
optimization gained by limiting the range of
occlusion would accept.

All tests were done on a Pentium 4, 2.8 ghz.
processor.

Scene Total
Elements

Occlusion
Range

With
hemi
sphere

test

time
(secs)

teapot 19,200 none no 531.21

teapot 19,200 none yes 178.8

head
model

94,860 none no 8521

head
model

94,860 none yes 4030

Figure Five: Shows the results of having no limit on
the occlusion range, and with the hemisphere test

optimization on and off.

Accelerated Ambient Occlusion Using Spatial Subdivision Structures
Chris Wassenius

Scene Total
Elements

Occlusion
Range

With
hemi
sphere

test

time
(secs)

teapot 19,200 1/12 of
scene
length

no
8.328

teapot 19,200 1/12 of
scene
length

yes 7.832

head
model

94,860 1/12 of
scene
length

no 130.9

head
model

94,860 1/12 of
scene
length

yes 113.53

Figure Six: Shows the results of having a limit on
the occlusion range, and with the hemisphere test

optimization on and off.

Figure Seven: Teapot with diffuse lighting
only.

Figure Eight: Teapot with ambient occlusion with
no limit on occlusion.

Figure Nine: Teapot with ambient occlusion
with a limit on the range of occlusion.

Figure Ten: Head model with diffuse lighting only.

Figure Eleven: Head model with ambient occlusion
with no limit on occlusion.

Figure Twelve: Head model with ambient occlusion
with a limit on the range of occlusion.

5 Conclusion and Future Work

The method presented in this paper uses a spatial
subdivision structure (an octree) to accelerate the
ambient occlusion calculation for a scene. An
octree is used to exploit two properties of ambient
occlusion. The first one is that ambient occlusion is
a function of nearby geometry. The second one is
that the occlusion of a point is determined solely by
the geometry that is located in the hemisphere
oriented around the surface normal of that point.
By using an octree, the algorithm can quickly
compute the occlusion of nearby surface elements
onto a receiving element by traversing down nodes
accordingly. An octree also allows for fast
hemisphere tests in order to determine if the
occlusion caused by the elements in a node need
be computed or not by using equation 2 on nodes.

Ambient Occlusion is a good method that mimics
global illumination effects at a much lower cost
than radiosity. It is therefore a worthwhile method
to work with until graphics hardware can support
such expensive methods. In addition to being used
for regular lighting purposes ambient occlusion
could be used in other areas. Ambient occlusion
distinctly highlights the geometry of an object and
could be considered for use in the field of non-
photorealistic rendering.

Accelerated Ambient Occlusion Using Spatial Subdivision Structures
Chris Wassenius

Future work could be done in many areas. Octree
levels can be used to incorporate Bunnel's [2005]
surface element hierarchy, with each level also
containing a representative surface element that is
based on all the surface elements within that level.
With this in place, the restriction on the range of
occlusion could still remain intact, and the surface
element hierarchy could be used within this range.
This would benefit scenes that have a large
occlusion range. Also, work could be done to
decrease the dependency of the quality of ambient
occlusion on the geometry of the scene. To remedy
this a subdivision technique could be used, such as
Iones [2003] lightmap method. Finer patches are
created by projecting input polygons onto a uniform
grid. The patches that are created from this can
then be used in the ambient occlusion calculation.
The calculated occlusion values can then be stored
in a lightmap that is the size of the uniform grid. At
run time, lightmaps are applied to the original
polygon data, resulting in a better result, without
the need to render extra geometry (although the
time taken to calculate the ambient occlusion
increases proportionally and this technique is
suitable only for non real-time purposes. Another
possibility for future work is to explore the use of
different spatial subdivision structures.

References

Bunnel, Michael. 2005. Dynamic Ambient
 Occlusion and Indirect Lighting. In GPU Gems 2:
 Programming Techniques for High-Performance
 Graphics and General-Purpose Computation, Matt
 Pharr, editor, chapter 14, pages 223–233.

Christensen, P. H. 2002. Ambient
 Occlusion, Image-Based Illumination, and Global
 Illumination. PhotoRealistic RenderMan
 Application Notes, Note #35.

Goral, C. M., Torrance, K. E., Greenberg, D. P., and
 Battaile, B. 1984. Modeling the interaction of light
 between diffuse surfaces. In Proceedings of the
 11th Annual Conference on Computer
 Graphics and interactive Techniques H.
 Christiansen, Ed. SIGGRAPH '84. ACM Press, New
 York, NY, 213-222.

Hanrahan, P., Salzman, D., and Aupperle, L. 1991.
 A rapid hierarchical radiosity algorithm. In
 Proceedings of the 18th Annual Conference on
 Computer Graphics and interactive Techniques
 SIGGRAPH '91. ACM Press, New York, NY,
 197-206.

Iones, A., Krupkin, A., Sbert, M., and Zhukov, S.
 2003. Fast, Realistic Lighting for Video Games.
 IEEE Comput. Graph. Appl. 23, 3 (May. 2003),
 54-64.

Méndez, A., Sbert, M., and Catá, J. 2003. Real-time
 obscurances with color bleeding. In Proceedings
 of the 19th Spring Conference on Computer
 Graphics (Budmerice, Slovakia, April 24 - 26,
 2003). L. Szirmay-Kalos, Ed. SCCG '03. ACM
 Press, New York, NY, 171-176.

Zhukov, S., Iones, A., Kronin, G.: "An Ambient Light
 Illumination Model", Rendering Techniques'98,
 Springer-Wien, NewYork (Proc. of Eurographics
 Rendering Workshop'98 - Vienna, Austria),
 pp. 45—55.

