
Real-time Particle Interaction with Relief-Surfaces

Ryan Bergeron

University of Maryland Baltimore County

Abstract

 In this paper we present a method for simulating
erosion of relief surfaces. Our method uses graphics
hardware to simulate particle interaction with relief surfaces
in real-time. Our system is designed to allow users to
simulate the aging of surfaces from various environmental
elements.

1 Introduction

Time is a constant with an inevitable affect on all things.
Various surfaces can be exposed to numerous
environmental conditions including sunlight, rain, snow and
wind. These naturally occurring circumstances act
synergistically with time, leaving an indication of their
presence. A solid surface such as nickel may show
erosion marks from rain and water, lines from prolonged
exposure to wind and etching from acid rain. These surface
aging signs are important environmental indicators for the
presence of pollution and natural weathering.

Over the lifetime of a surface exposure to elements create
what is known as deposition processes. This development
manifests itself in the form of household dust clumps,
mounts of dirt, pollen on a wind shield, even snow on our
lawns. These are all visible signs of deposition over a
surface’s lifetime. Although the accumulation of a different
substance on a surface may change its original properties,
its existence is too ephemeral to affect it in a manner that
chronologically ages it. Deposition processes, like the
accumulation of pollen or snow, are important in
understanding the trends of specific environmental
fluctuations such as global wind patterns. Since it is
possible to measure the magnitude of different erosion and
deposition processes, helpful guidelines for creating new
surfaces and materials can be devised by understanding
how they will react to the aging effects encountered
throughout their lifetime. Unfortunately, measuring these
effects is very time consuming, resulting in months or even
years of diligent observation to witness any change in the
surface.

In response to the difficulties experienced in recording and
documenting deposition processes, this paper proposes the
creation of a system that would allow us to simulate the
aging affects of different weathering processes by
incorporating current real-time surface representation
techniques with a real-time particle system that will create a
simple weathered surface.

2 Previous Works

This project was based off of three key elements, Surface
Deformation, Particle Systems, and Surface Weathering. In
the remainder of this section we will explain methods that
have been created relating to our project.

2.1 Surface Deformation

We need a way to change the structure of a surface. Most
current methods of changing the structure of a surface
require geometry editing. Surfaces can be created through
triangles connected into meshes of differing complexity
[Borouchaki et al. 1997]. Larboulette and Cani created a
simulator to create wrinkled surfaces with geometry [2004].
The difficulty in creating a realistic surface through straight
geometry is the need for high polygon count models.

Another way of creating a realistic surface is through
manipulating the surface pixels to create a pseudo distorted
surface. Bump mapping is a method that creates a
complicated surface by manipulating the surface normals
per pixel [Blinn 1978]. Displacement mapping is a similar
method to create complex surface structures [Kautz and
Seidel 2001][Hirche et al. 2004]. Relief mapping is a real-
time method for rendering height-displacement surfaces
[Oliveira et al. 2000][Oliveira et al. 2005]. This method uses
a height specified at each pixel to create realistic surfaces.
We have chosen to create our surface with relief mapping
for two reasons. First, relief mapping creates a detailed
surface structure that is less view dependant that both
displacement and bump mapping. Secondly, our particle
system we have chosen to implement is in similar space
and will require less effort to compute intersections.

Now that we know how to create surfaces, we need to know
how to deform a surface. Paquette et al. used the collision
of geometry and then changed the location of the vertices
that were in the collision zone in their hail simulator [2001].
Summer and O’Brien deformed the heights in a height map
then created the geometry based on the modified heights
[1999]. The way they modify the height field is similar to our
system. However in our system, there will be no geometry
created since we will be working on a relief surface.

2.2 Particle System

Simulating environmental elements, we have chosen to use
a particle system. Particle systems were first introduced by
Reeves as a method for creating fuzzy objects [1983].
After particle systems were introduced, researchers wanted
to be able to work with particles more realistically, and
added functionality such as particle-particle, particle-object
collisions [Reynolds 1987]. More recent efforts to create
more manageable particle systems have turned to graphics
hardware for accelerated render times. Knott and van den
Doel used hardware to detect collisions in particle systems
[2003]. The UberFlow system uses textures to hold both
position and velocity [Kipfer et al. 2004]. During rendering it
uses a vertex shader to assign positions to particles and a
fragment shader to update the position and velocity of a
particle in texture space. This system handles all types of
particle collisions. Our project will use the same manner of

controlling particle motion in texture space. Other system
have focused on managing large particle systems in
hardware [Kolb et al. 2004]. These systems use the same
method of creation and movement of particles as UberFlow
but are scaled for larger particle sets.

2.3 Surface Weathering

Aging a surface requires methods to simulate weather on a
surface. Our system is looking to erode a complicated
surface. Erosion models have been created for runoff at a
geometry level. Musgrave et al. wrote a system that
handled run off or water to create a eroded surface [1989].
This is similar to our work, but is on a large scale erosion
model. We are more concerned with how the element will
interact with the surface. “Flow and Changes in
Appearance” created a system that treats particles as water
drops and managed the chemical interaction of water and
surfaces [Dorsey et al. 1996]. This is similar to what we
have planned to do, but for this project we are more
concerned with particle-relief surface interaction and not the
chemical properties leading to the change in surfaces.
Dorsey as worked on geometry based slice model for
creating weathered stone surfaces [Dorsey et al. 1999].
This is a geometry model based aging of a surface. Dorsey
wrote another paper about rendering wet materials that
focused on the visual effects water has on viewing surfaces
[Dorsey et al. 1999].

2.4 Other Related Works

Oka et al. presented work on manipulating surfaces while
keeping textures meaningful and correctly aligned on that
surface [1987]. This is relevant to previous methods
because when editing geometry, a surface will still need to
maintain the information mapped to the vertexes.

Since the relief mapping method uses a linear ray trace
from the users view into the relief-space, it is appropriate to
include work in ray tracing. Current methods of ray tracing
have moved onto hardware accelerated ray tracing of a
scene. The GPU has been used for this performance gain
[Purcell et al. 2002]. The latest movement in real-time ray
tracing is to create a RPU or ray tracing processor unit so
that a user can use ray tracing that is built into the hardware
[Woop et al. 2005].

3. Method

Our method has been broken down into six steps. Steps
one through three are particle related. Then we age the
surface, followed by rendering steps five and six.

Figure 1: This is the flow chart of our system that occur per-
frame before rendering the final scene.

3.1 Particle Creation

Our particle system begins when a particle in world space
hits the relief surface (Figure 4a). From there, particles
are added to the system at the location of impact. Because
this specific process was not in this project’s scope, it will be
further defined in future work. Our system manages the
particle when it’s ready to move into relief space. The
particle’s position and age is represented as color in the
particle position texture of our system (Figure 3). A
particles velocity will be stored in the velocity vector texture.
The particle is assigned a texture value that corresponds to
both these textures. This is the general layout of the
UberFlow particle system.

1. Particle Creation

2. Particle Movement

3. Detect Collision

4. Age Surface

5. Draw Relief Surface

6. Draw Particles

Figure 2: This is a sample initial particle position texture.

Each texel can be assigned to a particle.

3.2 Particle Movement

Now that we have our particles locations and velocity
vectors, we perform need to move out particles location in
the relief space. To compute the new location of a particle,
we use a simple physics calculation.

2
gT t)T(s,o V t)(s,oP t)(s,

f
P

2

1
 ++=

 Po(s,t) is the x, y, z position of the particle stored in our
texture that contains particle positions. Figure 4c is a trace
of a particle in the relief texture space. Vo(s,t) is the
velocity vector stored in our texture that holds the velocity
vectors. T is the age of our particle in the scene which is
stored in the alpha channel of our position texture. We then
have to update our particle velocity vector such that,

gTt)T(s,oVt)(s,fV +=

Once we have moved the particle, we need to age it as well.

t).a(s,oP t)(s,oT

t).a(s,fT t).a(s,fP

.1t)(s,oTt).a(s,
f

T

=

=

+=

If a particle has reached a certain age, we will kill the
particle so that a new particle can be created. We will need
to copy the output from the frame buffer into the new
velocity vector texture. To save on execution time, we used
a frame buffer that will allow us to swap render targets
faster and have their resulting outputs stored directly to
textures. This work is done in a fragment shader.

Figure 3: This image is how we use color to represent the
position of a particle in relief space. Relief mapping uses
the alpha value to determine the depth of the surface and
our system uses blue for the depth of a particle. S and T

refer to the position of a particle on screen in our relief
space (X,Y) and alpha is the depth.

3.3 Detect Collision

Once we have moved our particles to their new positions,
we need to compare their location to the depth map off the
relief surface. To do this we compare if the z coordinate at
an (x,y) position of the particle against the Depth(x,y) of the
relief map. If z is greater than or equal to the depth of the
relief surface then the particle has collided with the relief
surface. Once a particle has collided with we will set its age
to a terminal value so that we know at what places particles
have collided with the relief surface. The frame buffer
object then stores the new texel values into an update
position texture. This is the final step in our fragment
shader outlined in our Particle Movement Section.

3.4 Age Surface

In the scope of this project we were concerned with creating
impact zone on the relief surface at locations where a
particle has collided. To accomplish this, we will look
through our particle position texture for ages with the
terminal value we set. A particle that has hit the relief
surface, we will increase depth of that texel value by a
scalar value. We have written a fragment shader that is run
over a relief surface. This scalar value in our results is the
setting to maximum depth. We copy the output from the
frame buffer into a new depth map for the relief surface.

3.5 Draw Relief Surface

Once all the particle moving and aging of surface has been
finished, we will draw our relief surface in view space using
the same method as described in “Real-Time on Arbitrary

Polygonal Surfaces” using our new depth map that we
created in our aging surface step [Oliveira et al 2005].

3.6 Draw Particles

The final step of our system is to draw particles. In this
stage of rendering, we will draw our particles. Given a list of
particles in our scene, we have constructed a vertex shader
that will assign the position in world space the values of the

particles in relief-texture space. This will require use to
convert the x, y, z position from relief-texture space to world
space. Any particles that have hit the relief surface and
have the age terminal value will not be drawn. This is will
allow us to see particles moving in the view space as if it
were in the relief space.

Figure 4: (a) Refers to a particle moving in world space before it intersects with our relief mapped surface. (b) The red is the

location in texture space at which the particle hits our polygon. This is where our particle system begins. (c) In this image we
track the movement of our particle inside the relief surface. The depth in relief space is related to the transparency of the blue.

The yellow refers to the location of impact. (d) This is the result of a particle hitting the relief surface.

4. Results

We have implemented the relief texture mapping code as
described in section 3.5 Draw Relief Surface. The fragment
shader was written as laid out in Oliveira’s work [2005]. We
added a vertex shader that will pass information into the
fragment shader as well as set up the tangent and binormal
vectors.

Figure 5: This shows three stages of our output. The relief
surface is indicated with the reliefMap label. The Velocity
Texture label is the output of Particle Movement faze, with
the new velocity vector. Position Texture is the output of

the particle position texture.

We implemented our Particle Movement method using one
frame buffer object writing off of sample code found at
http://www.gpgpu.org/developer/. We used their
framebufferobject and renderbuffer object code along with
our fragment shaders and created updated particle position
and velocity vector textures per frame.

Figure 6: This is the same image in as in Figure 5 but one

time step in the future. We can see both the particle
position and the velocity vector texture have changed..

In Figure 6 if you will notice that the amount of green in
each texel has decreased in the green channel from Figure
5. This is what is expected from our updating of our two
textures since the green channel is related to our Y position
and gravity reduces the Y position and velocity in a negative
factor.

Figure 7: This is image shows both the relief map after
aging and the resulting relief surface. The changes are

noted in the red boxes.

In Figure 7 you can see that we age our surface by
assigning the color of the texel to white and alpha value to
1. We do this so that we can watch the collision zones and
see the change in the relief surface immediately. The lower
red box is where the relief surface has changed. The speed
at which this occurs Is interactive, but we need to control it
at a frame per frame basis so that we can see the results of
this project. We believe that we will be able to attain real-
time results in later work.

Our method for drawing the particles did not work as
planned, and we were not able to draw the particles using
the vertex shader. We believe that adding a method to our
Draw Relief Surface shader to allow for drawing a particle
into our relief space.

5. Future Works

In our particle creation section we said that we needed a
method to convert the position and velocity of a particle in
world space to a particle in our relief space or the polygon.

Our aging surface performance is directly dependant on the
number of particles in our relief space. Since we look at
every texel in our relief map and need to find any particle
that hit our surface, a large number of particles would result
in slow run times.

Another area of future work would be applying erosion
models to create more realistic visual surface interaction.
This will involve changing the relief map color values so that
the normals reflect how the surface was changed.

We mentioned in the results section needing a method to
allow us to draw a particle that is in relief space. This still
needs to be done.

6. References

J. F. Blinn. “Simulation of wrinkled surfaces”. In Proceedings of

SIGGRAPH’78, pages 286–292, 1978.

Borouchaki, H., Hecht, F., and Frey, P. J. “Mesh Gradation

Control.” In Proceedings of 6th International Meshing

Roundtable, Sandia National Labs (oct 1997), pp. 131-141.

J. Dorsey, A. Edelman, J. Legakis, H. W. Jensen, and H. K.

Pedersen. Modeling and Rendering of Weathered Stone.

In Computer Graphics, SIGGRAPH ’99 Proceedings, pages

225–234. Los Angeles, CA, August 1999.

J. Dorsey , H. W. Jensen, J. Legakis. “Rendering of Wet

Materials.” In Eurographics Rendering Workshop, (1999).

Dorsey, J., Pedersen, H. K., and Hanrahan, P. 1996. “Flow and

changes in appearance.” In Proceedings of the 23rd Annual

Conference on Computer Graphics and interactive Techniques

SIGGRAPH '96. ACM Press, New York, NY, 411-420.

Hirche, J., Ehlert, A., Guthe, S., and Doggett, M. 2004. Hardware

accelerated per-pixel displacement mapping. In Proceedings of

the 2004 Conference on Graphics interface (London, Ontario,

Canada, May 17 - 19, 2004). ACM International Conference

Proceeding Series, vol. 62. Canadian Human-Computer

Communications Society, School of Computer Science,

University of Waterloo, Waterloo, Ontario, 153-158.

Jan Kautz and Hans-Peter Seidel. “Hardware accelerated

displacement mapping for image based rendereing.” In Graphics

Interface, pp 61-70, (2001).

D. Knott, K. van den Doel, D. K. Pai. “Particle System Collision

Detection using Graphics Hardware.” ACM SIGGRAPH, p 1,

(2003).

C. Larboulette and M. Cani. “Real-Time Dynamic Wrinkles.” In

Proceedings of Computer Graphics Inter-

national’04, IEEE Computer Society Press, 522–525.

F. K. Musgrave, C. E. Kolb, R. S. Mace. “The Synthesis and

Rendering of Eroded Fractal Terrains”, ACM SIGGRAPH ’89

Computer Graphics, Volume 23, (1989)

Oka, M., Tsutsui, K., Ohba, A., Kurauchi, Y., and Tago, T. 1987.

“Real-time manipulation of texture-mapped surfaces.” In

Proceedings of the 14th Annual Conference on Computer

Graphics and interactive Techniques M. C. Stone, Ed.

SIGGRAPH '87. ACM Press, New York, NY, 181-188.

Oliveira, M. M., Policarpo, F., and Comba, J. L. 2005. “Real-time

relief mapping on arbitrary polygonal surfaces.” ACM Trans.

Graph. 24, 3 (Jul. 2005), 935-935.

Oliveira, M. M., Bishop, G., and McAllister, D. 2000. “Relief

texture mapping.” In Proceedings of the 27th Annual Conference

on Computer Graphics and interactive Techniques International

Conference on Computer Graphics and Interactive Techniques.

ACM Press/Addison-Wesley Publishing Co., New York, NY,

359-368.

E. Paquette, P. Poulin, G. Drettakis. “Surface aging by impacts.”

Canadian Information Processing Society, pp 175-182, (2001).

Reynolds, C. W. 1987. “Flocks, herds and schools: A distributed

behavioral model.” In Proceedings of the 14th Annual Conference

on Computer Graphics and interactive Techniques M. C. Stone,

Ed. SIGGRAPH '87. ACM Press, New York, NY, 25-34.

R. Sumner, J. O’Brien, and J. Hodgins. “Animating Sand, Mud

and Snow.” In Proceedings of Graphics Interface, pages 125–132.

Canadian Information Processing Society, 1998.

Woop, S., Schmittler, J., and Slusallek, P. “2005. RPU: a

programmable ray processing unit for realtime ray tracing.” ACM

Trans. Graph. 24, 3 (Jul. 2005), 434-444.

