Image Analogies with Patch Based Texture Synthesis

Patrick Gillespie

Abstract

In this paper we introduce a simple new approach to
image analogies using patch based texture synthesis.
The patch based method takes the place of the pixel
based method that formed the foundation of the
original image analogy algorithm. The new method is
able to generate reasonable output for certain classes
of images and is able do it in a speedy manner.

1 Introduction

An analogy helps us figure out the relationship
between a set of objects, given that we understand the
relationship between a different set of objects that
have a similar type of relationship. If we know B
relates B’ the same way A relates A’, and we
understand the relationship between A and A’, we are
able to deduce the relationship between B and B’.
This simple reasoning process is extremely powerful
and is handy tool in understanding. For notation
proposes, analogies can be expressed as follows:

A:A:B:B

An image analogy is an analogy between two pairs of
images. Image analogies can be advantageous in that
they allow us to easily learn and apply image
transformations. They have the potential of saving
one the time of manually programming many
different image filters or programming new image
filters once a different image transformation is
developed.

Tools and methods for creating image analogies have
been created, studied, and have produced quite
amazing work [Hertzmann et al. 2001]. However, the
existing method for creating image analogies can take
minutes to hours to compute in certain circumstances.
Thus we explore an alternative way of creating them,
using some of the latest work in texture synthesis.

Texture Synthesis is the process of taking a small
sample of a texture and generating more of it. For
example, in Figure 1, given the input image A, a good

texture synthesis algorithm should be able to generate

Figure 1: Texture Synthesis Example

The above example was created through Graph Cut
texture synthesis [2001] which uses patches of texture
to create its output image. In this paper we attempt to
integrate this work along with other patch based
texture synthesis techniques to help accelerate the
creation of image analogies. We explain a simple
algorithm that one can use to create them.

2 Previous Work

Image analogies were originally developed by
Hertzmann et al. [2001]. The algorithm proposed
produces extremely good results in a number of
different circumstances and has a number of different
applications including, but not limited to, traditional
image filters, artistic filters, super-resolution, texture
by numbers, texture transfer, and improved texture
synthesis. It has also been shown to work well for
image colorization [Welsh et al. 2002].

The algorithm takes in 3 input images: An unfiltered
source image A, and filtered target image A’, an
unfiltered source image B, and produces a filtered
target image B’. Building upon the texture synthesis
work of Wei and Levoy [2000] and Ashikhmin
[2001], it uses a multiscale representation of all the
images, refining the output image B’ in each
successive level. As in the Wei and Levoy [2000] and
Ashikhmin [2001] texture synthesis algorithms, the

algorithm works by constructing the image pixel by
pixel. This attention to detail leads to the algorithms
only main drawback, which is that it takes a
reasonable amount of time to complete. The time of
execution varies depending on the input and the
desired goal. They note that on a 1GHz PC that their
algorithm’s execution time can take anywhere from a
few seconds for texture synthesis to a few hours for
artistic renderings.

Since the publication of the Image Analogies paper,
faster methods of texture synthesis have been
developed. These methods usually build their output
images with patches of texture as opposed to building
them pixel by pixel at many different resolutions.

Image Quilting [Efros and Freeman 2001] is one such
method. In Image Quilting, the output image is
generated block by block in raster scan order. New
blocks are placed next to old blocks with an over lap
of 1/6 of the block size. A dynamic programming
algorithm is then used to determine which pixels
from the new block will show up in the overlap
region in the output image. This region of pixels
forms a seam between the new block and the rest of
the picture. If the block is a good match, the seam
will barely, if at all, be noticeable.

Blocks being placed into the texture are all of the
same size. A group of possible blocks from the input
texture are selected based on how well their overlap
regions match the region on the output image that
they would overlap. One of these blocks is randomly
chosen to be the next block in the texture.

Graph Cut Texture Synthesis [Kwatra et al. 2003] is
another method of texture synthesis that works with
patches of texture. Instead of using a dynamic
programming algorithm to determine the best cut
between two images that are overlapping, it uses a
min cut [Ford and Fulkerson 1962] algorithm to
determine the optimal cut between two images. The
overlapping region between two patches, lets say A
and B, is set up as a graph of nodes where each pixel
in the overlap is represented by a node. Nodes along
the border next to a patch link back to a single node
that represents that patch. This node is either the
source or the sink in the min cut algorithm. Nodes
that are adjacent to each other in the graph have arcs
between them that are weighted based on the
following equation:

M(s, t, A, B) = lIA(s) — B!l + IA(D) — Bl

Here s and t are adjacent pixel positions and A(s)
represents the color of pixel s in patch A, and B(t)
represents the color of pixel t in patch B. After the
graph is set up, running the min cut algorithm will
yield the optimum cut between the two patches.
Extremely fast min cut algorithms and
implementations have been developed [Boykov et al.
1999].

Figure 3 gives an example of the set up for finding
the optimal cut. Nodes bordering the A and B
patches link back to it and all adjacent nodes have
arcs between them. Here the pixel overlap is only 9
pixels. A red line indicates a possible min cut. The
pixels on the left of this cut would end up coming
from patch A, while the pixels on the right of the cut
would end up coming from patch B.

m-jom

o @ @ .

Figure 3: An example of a minimum cost cut between
two texture patches.

3 The Algorithm

The algorithm presented in this section uses ideas
from Image Quilting [2001], Graph Cut Texture
Synthesis [2003], and the original Image Analogies
paper [2001]. For input, we take in three images: An
unfiltered source image A, a filtered source image A’,
and an unfiltered source image B. We output a
filtered target image B’. The algorithm is as follows:

¢ Select a block size and block overlap size to be
used. Tests seem to show that a block overlap of
12 works well. Small overlaps seem to produce
blocky outputs while large overlaps seem to
produce noisy outputs.

* The image B'is generated in a way similar to
Image Quilting. We move through image B,
examining it block by block with respect to the
block overlap we have chosen. We analyze each
block and find a block of pixels in image A that
matches well with it. This can be done by
randomly selecting a number of blocks from A,

or by selectively searching through blocks in A.
To keep the output image from being overly
repetitive, we find a group of blocks that matches
well with the block in B, and then randomly
select one of these blocks.

* The block in A’ that corresponds to the block we
selected in A is then chosen to be copied over to
the output.

¢ The region the A’ block is placed at overlaps
existing pixels in B’, the graph cut method
discussed in Section 2 to select which pixels in
the overlap are replaced with the new block’s
pixels.

* This process is repeated until the image B’ is
fully synthesized.

Figure 4 gives a visual example of this process. The
red block in A is selected as matching well with the
blue block in B. The corresponding red block in A’ is
then selected to be placed in the blue block area of
B’. A cut is made to determine which pixels are
copied to the overlap region.

As was done in the original image analogy algorithm,
one can chose to only copy over certain pixel features
from the pixels in A’, such as luminescence. This is
essential when the input images A and A’ don’t have
all the colors needed to create an output image B’.
Tests seem to indicate that output images whose
results were generated by strictly by copying over the
raw pixel data tend to look inferior to images
generated in the same fashion which only had
luminescence copied over.

A Al

B B'
Figure 4: Analogy construction diagram. The dark
gray areas represent filled in pixels. The white areas
represent areas not yet filled in

To obtain even better results, we can use the pixels in
the overlap region of B’ to help find a better set of
block candidates for the next block that will be
written in B’. This can happen as follows: The pixels
in blocks from B and A are compared, and weighted
in with this comparison are how well the
corresponding blocks from A’ and B’ match in the
regions that have already been filled in. This will
allow us to find the blocks that will produce the least
noticeable seams in the output image.

3.1 Block Size

A hidden variable in this algorithm is the block size
used in comparing and copying over pixels. The
block sizes can vary depending on the size of the
inputs and the features you want to capture. Too
small a size and your output will look very pixilated.
Too large a size and your output will simply look like
a scrambled version of your input image A’. There is
no set way of determining the block size, though
from experimentation, block size between 30x30 and
40x40 pixels seem to work well.

3.2 Comparing blocks of pixels

In order to find a reasonable block of pixels to use
from our input images, we use a cost function that
tells us how well a particular image block matches
with another image block. A sum of squared
differences between blocks of pixels works fine for
such cases [Kwatra et al. 2003]. However, the sum of
squared differences function is computationally
heavy, and to keep time down it is wise to only check
a random number of offsets for possible match ups.
Checking only around 2000 offsets can usually lead
to reasonable results, as seen in Figure 5. If one
wishes to do a full patch search of every possible
block, in order to find the best possible candidates,
one can use block matching techniques that are
accelerated by the Fast Fourier Transform. Such
techniques [Kwatra et al. 2003; Kilthau et al. 2002;
Soler et al. 2002] can lead to speeds 13%-29% of an
exhaustive search [Soler et al. 2002]. Full patch
searches do have their draw back though, and they
will be discussed in the results section.

3.3 Sets of Analogies

Often times, an example analogy will not contain all
of the features one needs in order to accurately
capture the results in the B’ image. A simple
enhancement is to have multiple example analogies as
an input in creating the output. One would then

simply consider the best block offsets from the input
sets in determining the patch to copy over. Figure 7
gives an example of an analogy that was created with
an analogy set.

4 Results

Following the Reference section of this paper, you
will find a number of result images. Figure 5 gives
four image analogies that were created using random
patch offsets to find the best possible candidate patch.
As you can see, the resulting B’ images come out
fairly well for being made completely out of pixel
chunks from their input A’ image. Since the possible
pallet of pixel chunks for B’ comes entirely from
input A’, we chose to use input B images that were
very similar to input A images.

Each of these results took between 45 seconds and 3
minutes to generate on a 2.01GZ PC. The first
analogy shown, of the tree on the hill, took 45
seconds to generate while output for the same inputs
took over 3 minutes to generate using the software
provided by Hertzmann et al. [2001] for the original
algorithm. It should be noted that the original size of
these images was 200x313 pixels.

Figure 6 shows a comparison between images
generated using the original algorithm and our
algorithm on an example set of size 512x400 and an
input B image of size 512x383. In this case, a FFT
block matching speed up was used to find optimal
patches. Using a full patch search without the FFT
speed up it took slightly over 10 hours to generate an
output image for this set. Using a full patch search
with the FFT speed up it took only 1,017 seconds to
generate an output image. However, using the
original algorithm, it took only 863 seconds, and
produced a better output. Thus the FFT speed up,
though an incredible speed up over full patch
searching, it is not fast enough to beat the original
algorithm’s speed.

It should be noted that both algorithms used
luminance copying in this case to produce the colors
in their output images. A black and white image is
shown in Figure 6 as an intermediate step that was
taken by the original algorithm in creating its output.
Our algorithm, though it also used luminance
copying, was not able to achieve the same level of
detail.

Here the features of the input image cannot be
expressed well by the input analogy of a forest. This

shows the importance of the need for an input
analogies pair to be similar to the input image B. The
greater the difference between the input images A and
B, the harder it will be for image B to be captured in
the output.

This brings us to one of the algorithms limitations:
the image analogies that can be emulated are
somewhat limited. The input image B must be
similar to the input image A in order for an accurate
B’ image to be generated. Also, since pixels are
transferred in blocks from image A’ to image B’,
some detail is lost in the output image. Traditional
filters such as the blur filter are not emulated well at
all. In fact, any kind of image transformation that
requires precise details will not fair well.

However, there are plenty of cases where the output
images seem to come out nicely. Through testing it
seems to be shown that this process works well for
artistic filters that do not require precise details and
have a certain amount of noise in their filtered output.
Texture transfer also comes out nicely. This can be
done by setting images A and A’ equal to the texture
one wishes to apply to image B.

Finally, Figure 7 gives an example of an output that
was generated using an analogy set. Blocks from
both example sets end up being used in the creation
of the output image. Two outputs images are shown,
one where pixels were copied over directly, and one
where only luminance was copied over. These two
images were generated on the same run of the
program, so they are made up of the same patches.
The only difference between them is in what was
copied over.

5 Conclusion

In this paper we have described a possible alternative
to creating image analogies. Test results indicate that
the algorithm works well for inputs that are similar
and that resultant images can be generated in a
fraction of the time of the original algorithm if only a
subset of patch offsets are considered. Full patch
matching using the FFT can produce images that have
better candidate patches, but resultant images will
take longer to produce than the original algorithm.

5.1 Acknowledgements

We would like to thank Hertzmann et al. [2001] and
Boykov et al. [1999] for making their software
available for use. We would also like to thank John

Shaw for letting us use his “Darkclouds” and
“Swawn” images (used in the first two analogies in
Figures 5, as the example analogy set in Figure 6 and
as second analogy set in Figure 7), Rachel Dodge for
letting us use her flower image in Figure 6, and thank
Hertzmann et al. [2001] again for letting us use some
of their images.

References

Michael Ashikhmin. Synthesizing Natural Textures.
2001 ACM Symposium on Interactive 3D Graphics,
pages 217-226, March 2001.

Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast
approximate energy minimization via graph cuts. In

International Conference on Computer Vision, pages
377-384, 1999

Alexei A. Efros and William T. Freeman. Quilting for
Texture Synthesis and Transfer. Proceedings of
SIGGRAPH 2001, August 2001.

Lester R. Ford, Jr. and D. R. Fulkerson. Flows in
Networks. Princeton University Press, 1962.

Aaron Hertzmann , Charles E. Jacobs , Nuria Oliver ,
Brian Curless , David H. Salesin, Image analogies,

Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, p.327-
340, August 2001

Vivek Kwatra, Arno Schodl, Irfan Essa, Greg Turk,
and Aaron Bobick. Graphcut textures: image and
video synthesis using graph cuts, ACM Transactions
on Graphics (TOG), v.22 n.3, July 2003

Kilthau, S.L., Drew, M., and Moller, T. 2002. Full
search content independent block matching based on
the Fast Fourier Transform. In ICIP02, I: 669-672.

Cyril Soler, Marie-Paule Cani, Alexis Angelidis,
Hierarchical pattern mapping, ACM Transactions on
Graphics (TOG), v.21 n.3, July 2002

Tomihisa Welsh, Michael Ashikhmin, and Klaus
Mueller, Transferring color to greyscale images,
ACM Transactions on Graphics (TOG), v.21 n.3, July
2002

Li-YiWei and Marc Levoy. Fast Texture Synthesis
Using Tree-Structured Vector Quantization.
Proceedings of SIGGRAPH 2000, pages 479488,
July 2000.

Figure 5: Images analogies created using a subset of patch offsets

Figure 6: A comparison between the original and the patch based method

Figure 7: An image analogy example that uses sets of analogies. Two outputs are shown, one
where raw pixel values were copied over, and one where only luminescence was copied over.

