
Methods of Static Load Balancing for Ray Tracing

Joel Goldfinger∗

University of Maryland Baltimore County

Abstract

High quality images using ray tracing takes a long time to produce.
There have been many algorithms developed to improve the pro-
duction time of ray traced images. However, even with current
acceleration algorithms, ray tracing takes a long time for a large
number of geometric primitives. Another way to shorten the pro-
duction time is to increase the number of computers processing a
single image. This paper presents a couple different methods for
static load balancing on parallel computers and compares them to
previous methods.

Keywords: ray tracing, parallel computing, load balancing

1 Introduction

There are many methods that decrease the rendering time of a ray
traced image. These methods work by decreasing the number of ray
intersection tests that need to be done. The various types of meth-
ods that have been done in the past will be covered in the previous
work section. However, these methods only decrease the render-
ing time so far and may not be fast enough for certain applications.
In addition to those methods, an increase in the number of com-
puters used to process a ray traced image can reduce the rendering
time. The problem with this is that as computers are added there is
a higher imbalance in rendering time between the machines. Many
methods have been developed distribute the pixels of an image in a
way to minimize this imbalance. There are even other methods to
optimize the way in which to break up the geometric world among
each computer when the world is much bigger than the memory of
each computer. However, this paper takes the assumption that the
geometric world to be rendered is small enough to fit in the memory
of each computer.

In this paper I present a couple of different methods to distribut-
ing the pixels among the computers before rendering starts in or-
der to minimize the imbalance among each computer. For the first
method, pixels are distributed among each processor using a Self-
Organizing Map. The Self-Organizing Map is a type of neural
network that categorizes data into lower dimensions. The Self-
Organizing Map takes in the geometric world to be rendered and
outputs a two dimensional array that will be used to assign the
computers to the various pixels. The other method distributes pix-
els by projecting the geometric world onto a plane. An important
note about this method is that it does not evenly spread the pixels
among the computers like the other methods do, including the Self-
Organizing Map. These methods will be compared to two other
existing static load balancing methods. The other two methods
are called naive tiling and scattered decomposition [Salmon 1988].
Figure 1 shows the three different images that were rendered using
the four methods tested in this paper.

The related work section covers some work that is similar to the
method proposed in this paper. The implementation section dis-
cusses how the algorithm in this paper was implemented. The re-
sults section will cover how well the method worked as well as com-

∗e-mail: joelg1@umbc.edu

Figure 1: These images were rendered to test the static load balanc-
ing methods. A) The upper left picture is an image of many spheres.
B) The upper right picture is a teapot. C) The lower picture is an
image of many triangles.

pare it to previous methods developed. The conclusion will summa-
rize the the value of these new methods. The future directions sec-
tion will discuss possible improvements and extensions that could
be tested.

2 Related Work

The majority of the time in rendering a ray traced image is ray-
object intersection tests. In order to reduce the number of objects
that need to be tested, methods have been proposed to create large
bounding boxes which encompass multiple objects. There are two
common methods to create theses bounding boxes, one is spaced-
based [Whang et al. 1995; Van Reeth et al. 1996] and the other
is tree-based [Tan et al. 1999]. The spaced-based method breaks
the world into voxels. The way the space is broken up is done
uniformly or nonuniformly. The tree-based method is where the
objects are fitted by a simple bounding volume. Then many of those
volumes are bounded by bigger volumes, until all the volumes are
bounded by one big volume. The disavantage of space-based is
that it wastes a lot of memory where areas of space happen to be
empty. Tree-based does not have all the empty volumes, but has
to keep braking down the bounding volumes until it hits an object,
which takes longer time to compare all those bounding volumes.
Another disavantage of both is that they both take time construct
their bounding boxes. The paper [Klimaszewski and Sederberg
1997] proposed doing a mix of both space-based and tree-based.

The next step to decreasing the rendering time after minizing in-
tersection tests, is to run the ray tracer over multiple computers. It



should be noted that some existing methods reduce the number of
intersections significantly, and thus limit the ability of using multi-
ple computers. There has been much work done on figuring out how
to optimize the load among each computer. However, currently load
balancing the world to be ray traced over the computers is highly
inefficient as the number of computers increase. Two ways exist to
balancing a system one being static and the other being dynamic.
The static methods decide which pixels are processed by which
computer before the actual rendering begins. One such method
called naive tiling, which is breaking the image up into tiles where
each computer processes a tile. The other method called scattered
decomposition [Salmon 1988], which is where the first computer
gets a pixel, then the next computer get the next pixel and so on.
Dynamic methods change the allocation of pixels to a given com-
puter when imbalances occurs during the rendering of the image.
Heirich and Arvo [1998] use a method where each computer asks
its neighborhood computers for work when it needs more. Their
dynamic method had very little cost because it only communicated
with its neighborhood computers, and thus proved to be much better
than the existing static methods. They went further to use a hybrid
method which did much better than the static and dynamic method
by themselves.

When the world’s geometric primitives take up more memory than
one computer can hold, the the world has to be split up among the
computers. In this case not only does load balancing have to be
considered, but the placement of geometric primitives have to be
distributed in such a way to minimize the transfer of data between
computers. This makes minimizing the time a harder issue because
not only the load of each computers has to be consider, but the time
to pass geometric primitives of the world. The papers [Badouel
and Priol 1990; Salmon and Goldsmith 1988] talk about solutions
to this type of problem. The paper [Reinhard et al. 1998] goes
further to propose calculating the cost up front in order to determine
an optimized way to distribute the computation and data among the
computers.

3 Implementation

The first method was using a Self-Organizing Map to balance the
load among the computers. A Self-Organizing Map is a neural net-
work that is used to lower the dimension of input data into one or
two dimensions, while mapping the data into different categories.
For this paper a two dimensional Self-Organizing Map was used.
The first part of the implementation was to have the Self-Organizing
Map to analyze the the geometric primitives of the world. For this
paper the only geometric primitives used were spheres and trian-
gles, since they are the most commonly used objects in a ray tracer.
The spheres are read into the Self-Organizing Map as a four dimen-
sional vector which are the xyz-coordinates plus the radius. Since
the Self-Organizing Map breaks similar data into categories the tri-
angles were encompassed by spheres. The triangles were also en-
compassed by spheres because a Self-Organizing Map requires that
the input vector be the same for all the data.

Self-Organizing Maps use a lattice of nodes whose weights are the
same as the input vector size. Figure 3 shows an image of what
this lattice looks like. These weights were used to map the pixels
onto processors to be ray traced through scattering the pixels among
each category. Due to the fact that the Self-Organizing Map takes
a longer time the higher number of nodes used, a smaller number
than the size of the image to be produced are used. For this im-
plementation a ratio of one node for every sixteen pixels was used.
This method is not as accurate as having a node for every pixel, but
seems to be accurate enough while not consuming too much time.

Figure 2: The Self-Organizing Map’s visual representation of the
spherical geometric world.

Figure 3: A picture of what a Self-Organizing Map looks like. The
red circles are the nodes and the green circles represent the input
vector. The lines represent the weights which connect from each
green circle to all the nodes.

Figure 2 demonstrates what the categories look like running the
method on Figure 1A, using RGB color and a fourth value for
the brightness. While the figure shows all the categories the Self-
Organizing Map recognizes, this implementation breaks them up
into twenty-one categories. These categories were created by
breaking the four dimensional weights of the Self-Organizing Map
into twenty-one discrete values. The reason for using only twenty-
one categories was that with a high number of objects like in figure
1, there are too many small categories which were the size of a few
pixels. After the Self-Organizing Map finishes its training and has
been broken up into twenty-one categories, the map is used to as-
sign computers to pixels to be ray traced. This mapping was done
by using the scattered decomposition method over the twenty-one
regions instead of over square tiles. This works because scattering
over similar categories means that the pixels assigned to each com-
puter are similar, especially as the number of CPUs are increased.

The other method is projecting the geometric world onto a plane,
which would be used to assign pixels to the computers for process-



Figure 4: The visualization of the mapping of the spherical geomet-
ric world onto a plane.

ing. The idea behind this method is that objects that are larger and
closer to the view plane would have more ray intersections. To get
the projection data, an intersection test was done for all the objects
from the view plane that would be used for the ray traced image. For
each intersection of an object, a small positive constant was added
to the value at the given pixel location. Adding a small positive
constant for each intersection allowed multiple layers of spheres
and triangles to be added with in one pixel. Once all the intersec-
tion were done there was a two dimensional array which contained
the predicted loads of each pixel that needed to be ray traced. Fig-
ure 4 shows an example of a two dimensional array created from
the image in Figure 1A.

Once the intersection test completed the two dimensional array, the
computers were assigned to the pixels in a way that the predicted
load was balanced among each computer. This process was done
by assigning the computer with the lowest predicted load so far the
next pixel. Since pixels were assigned based on their predicted load
each computer did not have the same number of pixels assigned.
This makes the method different from all the other static methods
since they all assigned computers the same number of pixels.

4 Results

The results from table 1 show that both of the new methods pro-
posed in this paper worked much better than the previous ones for
the geometric world made up of spheres when the number of CPUs
were 256. The Self-Organizing Map even did better than the scat-
tered decomposition method for the lower number of CPUs. For the
teapot geometric world the Self-Organizing Map still did better than
the scattered decomposition, but only when there were 256 CPUs
running. The projection method still performed much better than
the naive tiling method, but had slightly worse performance com-
pared to the scattered decomposition method. On the triangle ge-
ometric world the Self-Organizing Map and the projection method
performed much better than the existing methods for 256 CPUs.
However, for the lower number of CPUs both of the methods pro-
posed in this paper did worse performance wise when compared
to the scattered decomposition method. Since both of the existing
methods had problems as the number of CPUs used increased, both
of the new methods showed promise to be able to replace them at
the higher level of CPUs.

Model #CPU Naive Scattered SOM Projection

Spheres 16 61% 0.7% 0.6% 2.1%
64 72.8% 4% 3% 5.8%
256 116% 26% 14.8% 17.2%

Teapot 16 105% 1.4% 3.8% 5.6%
64 126% 7% 15.5% 11.4%
256 175% 25.7% 24.3% 29.2%

Triangles 16 43% 1.5% 5.2% 6%
64 54.4% 2.9% 14.6% 20%
256 68% 42% 38% 37.3%

Table 1: The numbers represent the percentage error from the opti-
mal load balancing of the ray traced image.

From looking at the results the Self-Organizing Map method
worked well on spherical objects, but had performance issues with
the triangular objects. The reason for this was most likely do to the
fact that the triangles were encompassed by spheres. This led to in-
accurate categorizing of the triangles in the Self-Organizing Map,
which most likely explains why the Self-Organizing Map did not
perform nearly as well as it did with the spherical geometric world.
Another issue with the Self-Organizing Map was coming up with
the number of categories to use from the map. With a dynamic
number of categories it is possible that the Self-Organizing Map
may have better performance results.

The projection method only did well for the higher number of
CPUs. The reason for this was because it did not scatter the pix-
els evenly among all the processors, but instead assigned the pixels
based on the predicted load. That meant that as the number of com-
puters increased it was better able to spread the load among the
computers because it would give computers assigned pixels with
higher predicted cost to ray trace less of the total pixels. However,
since the pixels were not spread evenly, with a lower number of
CPUs the methods predicted load would have a somewhat higher
error rate. Another problem with the projection method was that
the up front cost for the projection of the geometric world was high.
However, there are other methods that can be used to project the ge-
ometric world much quicker.

5 Conclusion

The results show that both of the methods proposed in the paper
have promise to replace existing static load balancing methods. Fur-
thermore, while the methods did not perform that well with a lower
number of CPUs, they did for the higher number which is currently
the problem with static load balancing. While both the methods had
problems with triangular objects, possible fixes to those problems
are addressed in the future directions section. Furthermore, though
the projection method had a high cost up front there are other pro-
jection methods that could be implemented that would drasticly
speed up the projection process. With improvements to either of
the two new methods, one of them may be able to be used in con-
junction with the dynamic method in Heirich and Arvo [1998] to
work better than their existing hybrid method.



6 Future Directions

The methods proposed in this paper had significant performance
increasing over the existing static load balancing methods, but with
future improves could do much better. One such fix is to improve
the way in which the Self-Organizing Map method recognizes the
triangles. For the Self-Organizing Map instead of using a sphere
to encompass the triangle, a second Self-Organizing Map could be
used for the triangles and then merged with the Self-Organizing
Map that processed spheres. Another way to include the triangles
into the Self-Organizing Map would be to bound both the spheres
and triangles by a box oriented with the axis which would only
increase the vector size by two. This would make the extra space
encompassed by the triangle less than bounding with the spheres,
with limited extra space surrounding the spheres in the geometric
world. However, using this method would requiring some action
being taken to make sure that the Self-Organizing Map was not
too slow, since as the number of vectors increase the time increase
quite a bit. Another improvement could be to make the number
of categories read from the Self-Organizing Map dynamic, which
might improve the pixel assignment.

The projection method needs to take into account the angle at which
the triangle is relative to the view plane. The problem was that the
angle affects the surface area of the triangle, which caused issues
for the projection method as shown in the result. A possible solu-
tion might be to add some predicted load to the surrounding pixels
where the triangle was projected based on the angle at which it was
at. Another problem with the projection method was that it checked
the intersection of all the objects from the view plane, which makes
it a very slow process. However, there are other ways in which to
project the geometric worlds onto the view plane much quicker that
could be implemented instead of the one used in this paper. Another
possible improvement could be to use more than one projection, so
that there are multiple slices through the geometric world. This
would give a much better prediction of the load of each pixel, since
it would include more information about the reflection and refration
done by the ray tracer.

An extension for the two static methods in this paper could be im-
plementing them with the dynamic method in Heirich and Arvo
[1998]. Since in the results it showed that they worked better than
the scattering method for a higher number of CPUs, then the hybrid
method the authors created with scattered decomposition should
work better with the new methods in this paper.

7 Acknowledgements

I would like to thank Mat Buckland for the use of his Self-
Organizing Map code. I would also like to thank Mat Buckland
for the use of figure 3, the image of how a Self-Organizing Map is
constructed. I would also like to thank Marc Olano for his modifi-
cation of the rayshade ray tracer program. Lastly, I would like to
thank the creators of the Standard Procedural Databases for the use
of their geometric worlds to test the load balancing methods in this
paper.

References

BADOUEL, D., AND PRIOL, T. 1990. An efficient parallel ray
tracing scheme for highly parallel architectures. In Advances
in Computer Graphics Hardware V, Tutorial on Perspectives

of Computer Graphics, R. Grimsdale and A. Kaufman, Eds.
Springer-Verlag, New York, 93–106.

HEIRICH, A., AND ARVO, J. 1998. A competitive analysis of
load balancing strategies for parallel ray tracing. The Journal of
Supercomputing 12, 1–2, 57–68.

KLIMASZEWSKI, K., AND SEDERBERG, T. 1997. Faster ray trac-
ing using adaptive grids. Computer Graphics and Applications,
IEEE 17, 1, 42–51.

REINHARD, E., KOK, A. J. F., AND CHALMERS, A. 1998. Cost
distribution prediction for parallel ray tracing. In Proceedings
of the Second Eurographics Workshop on Parallel Graphics and
Visualisation, Eurographics, Rennes, France, 77–90.

SALMON, J., AND GOLDSMITH, J. 1988. A hypercube ray-tracer.
In Proceedings of the third conference on Hypercube concurrent
computers and applications, ACM Press, New York, NY, USA,
1194–1206.

SALMON, J. 1988. A mathematical analysis of the scattered de-
composition. In Proceedings of the third conference on Hyper-
cube concurrent computers and applications, ACM Press, New
York, NY, USA, 239–240.

TAN, T.-S., CHONG, K.-F., AND LOW, K.-L. 1999. Comput-
ing bounding volume hierarchies using model simplification. In
I3D ’99: Proceedings of the 1999 symposium on Interactive 3D
graphics, ACM Press, New York, NY, USA, 63–69.

VAN REETH, F., MONSIEURS, P., BEKAERT, P., AND FLERACK-
ERS, E. 1996. Ray tracing optimization utilizing projective
methods. In Computer Graphics International, 1996. Proceed-
ings, 47–53.

WHANG, K.-Y., SONG, J.-W., CHANG, J.-W., KIM, J.-Y., CHO,
W.-S., PARK, C.-M., AND SONG, I.-Y. 1995. Octree-r: an
adaptive octree for efficient ray tracing. Visualization and Com-
puter Graphics, IEEE Transactions on 1, 4, 343–349.


