
Real-Time Fur with Precomputed Radiance Transfer

John W. Kloetzli, Jr.∗
UMBC

Figure 1: Left: Dense, unlit fur (color set by depth) 55000 hairs, 32 shells. Right: Final render of fur in real-time with lighting.

Abstract

This paper introduces Precomputed Radiance Transfer (PRT) to
shell textures in the context of real-time fur rendering. PRT is a
method which allows static objects to have global illumination ef-
fects such as self shadowing and soft shadows while being rendered
in real-time. This is done by precomputing radiance on the surface
in a special basis that is chosen to allow reconstruction of correct
illumination in arbitrary lighting environments. Shell textures is
a technique for rendering complex surface geometry in real-time
through the use of concentric 3Drings or shellsaround a model.
The shells are transparent everywhere except at the intersection of
the shell and the microgeometry that is being rendered. We nov-
elly apply these two techniques to the problem of rendering fur to
produce real-time rendering of fur with global illumination.

Keywords: real-time, fur, precomputed radiance transfer, PRT,
microgeometry, microsurfaces

1 Introduction

Rendering microsurfaces is a difficult task in computer graphics.
Because microsurfaces are by definition very high frequency geom-
etry, traditional rasterization or ray tracing techniques bog down to
the point of uselesness or are plagued with terrible aliasing artifacts.
Surface shading techniques are also not suited to the task because
microsurfaces, although very small, are still geometrically visible
to the naked eye, which lighting equations alone are unable to cap-
ture.

Fur is a perfect example of a microsurface, containing hundreds
or thousands of hairs that are very small but certainly individually
visible. Still, we need to render fur if we intend to have realistic an-
imals in computer graphics. In addition, we need a very fast way to
render it if we intend said animals to be in an interactive application
such as a game.

Some of the first techniques used to render fur were based on 3D
textures. Kajiya and Kay [1989] described a ray-tracing method
which stored microsurface data in a volume and modeled light scat-
tering and attenuation along each ray through the volume. This
method produced excellent results, but was far from real-time. In

∗e-mail: jk3@umbc.edu

addition, close inspection of the fur revealed what they described as
the ”painter’s illusion”: blotches of color that appear to be micro-
geometry from a distance but up close separate into meaningless
blobs. Hypertexture[Perlin and Hoffert 1989] is another volume
method, but instead of capturing surfaces they record densities be-
tween 0 and 1. This gives the effect of ’soft’ objects, with which,
by modulating these densities using different functions, they could
produce a variety of effects, including fur. Although Hypertexture
can model many different things effectively, it doesn’t produce as
realistic fur as other methods. There are implementations of Hyper-
texture that run in realtime on todays graphics hardware, but none
of them attempt to compute inter-object shadows that are needed
for realistic microsurfaces.

Another method for fur rendering was proposed by Goldman
[1997], who was working on rendering fur for the Disney film101
Dalmations. His basic assumption was that the camera was never
going to get close enought to a furry object for the geometric prop-
erties of the fur to become distinct from the lighting properties.
Since it is impossible to explicitly see any geometry in this applica-
tion, none is modeled. His method described light reflections from
coats of fur using a fairly complex (although much less than geo-
metric approaches) purely stochastic lighting model, and thus isn’t
suitable for applications that want to display geometric fur.

Real-time fur methods have also been previously explored. Gelder
and Wilhelms [1997] explore simply drawing lines using standard
graphics workstations. Although they didn’t get very realistic re-
sults, they did show that it was possible to render fur at interactive
rates.

The second real-time technique of interest here was introduced in
2001 by Lengyel et al [2001]. The method creates concentricshells
around the model being rendered, each shell displaying a differ-
ent part of a volume texture. The shells are transparent except for
the precomputed intersection of the shell and the fur volume that
they created. When rendered together they create a very convinc-
ing furry surface. While this works well when viewed from above,
since the shells overlap, creating the illusion of continuous geom-
etry, it doesn’t work for vertices near the silhouette of the object
since the gaps between adjacent shells become apparent. To rem-
edy this, they add small textures rendered normal to the surface
across all the edges in the model, which they fade in as the edge
approaches the silhouette. Thesefin texturesfill in the gaps in the
shell textures on the silhouette, creating a complete geometric ren-
der of fur. This technique can be viewed as a form of rendering the
Kajiya and Kay [1989] fur model in real-time, but using a simple

ambient/diffuse/specular lighting scheme that doesn’t capture self
shadowing. Real-time lighting of microsurfaces is a difficult prob-
lem, but one that must be solved to even approach realistic results.
As discussed by Lokovic and Veach [2000], rendering realistic mi-
crogeometry such as fur depends heavily on inter-object shadows,
namely hair-to-hair shadows.

One method that can be used to perform inter-object shadows with
complicated geometry is Deep Shadow Maps [Lokovic and Veach
2000]. Traditional shadow mapping basically renders the scene
from the position of each light, storing the depth value for each
render into depth-maps. The scene can then be re-rendered from
the camera point of view, looking at the position of the first obe-
ject hit for each fragment. If the distance between that object and
the light is greater than the corresponding depth-map value, then
the surface isn’t the first one hit by the light and therefore is in
shadow. If the depths match, then the object is the first one seen by
the light and should be lit. However, traditional shadow maps are
prone to aliasing for high-frequency geometry (unless prohibitively
high resolutions are used) and hence are not suitable for microge-
ometry. Deep shadow maps, on the other hand, store a function at
each texel. This function defines the fractional visibility of the sur-
face at all depths, which can be used to render fast self-shadowing
of objects. One downside of this method is that the functions must
be recomputed if the lighting changes, making deep shadow maps
most useful in static lighting situations.

Since asthetically pleasing fur illumination can be obtained in of-
fline rendering [Kajiya and Kay 1989], one possible approach is to
precompute the lighting at different points on the object and recre-
ate it at run time to approximate run-time lighting. Precomputed
Radiance Transfer [Sloan et al. 2002] allows for this through the use
of basis functions designed to efficiently encode the lighting across
an object for later reconstruction. Several different basis functions
have been explored, including Spherical Harmonics (SH)[Sloan
et al. 2002] [Sloan et al. 2003b], Zonal Harmonics (ZH)[Sloan et al.
2005], and Harr Wavelets (HW) [Wang et al. 2005] [Liu et al. 2004].
While SH and ZH are limited to low-frequenty lighting, they are
easily rotatable and require small texture sizes. The HW basis func-
tions are much more numerous, which allows them to represent all-
frequency lighting, but also require more texture space and run-time
processing.

Many different variations of PRT have been explored. It has been
used to recreate diffuse [Sloan et al. 2002] and specular [Sloan et al.
2002] [Liu et al. 2004] lighting, as well model subsurface scattering
[Wang et al. 2005] in real-time. Multiple scales of PRT [Sloan et al.
2003b] can be used to create high-frequency local effects in addi-
tion to complete inter-model lighting. The ZH basis functions can
be used to represent easily rotated lighting, leading to PRT for de-
formable objects [Sloan et al. 2005], which is otherwise impossible
(since inter-object lighting effects are being precomputed). Usual
implementations store lighting on a per-vertex basis, but light-cloud
representations [Kristensen et al. 2005] have also been used.

2 Method

Since the principal type of illumination that we are trying to cap-
ture is hair-to-hair shadows in a furry surface, we will be using local
PRT on a single fur texture. We use the the Spherical Harmonics as
basis functions for our application because the procecss of render-
ing the volume will tend to smooth out any high frequency lighting.

Our method is to combine the successful real-time fur rendering
of Leyngel et al [2001] with PRT lighting. Our approach can be
summarized as follows:

1. Create a realistic fur texture

2. Compute lighting of the fur using an off-line technique

3. Convert the lighting into a PRT basis

4. Reconstruct the lighting in real-time

2.1 Creating Fur

Several things are necessary to create a good fur model. First, hairs
need to start out thick and become thinner as they go out. We model
this by choosing a random width for the base of each hair and cal-
culating a linear falloff as the hair goes upward. Second, they need
to curl. We model this with a simple parabolic trajectory in a ran-
dom direction. Third, the textures generated should be antialiased.
This is important to preventjaggiesfrom making individual hairs
appear to jump around as they go up. We do this by computing the
percent of each hair that crosses a horizontal plane at the center of
each texel that it passes through. Essentially this is calculating the
intersection of the hair and the pieces of shell that it is going to be
rendered on.

In order to simplify this calculation, we restrict the width of hairs
to be at most 1 pixel, limiting the number of adjacent pixels that a
hair can intersect to four. Each of these pixels is numbered from the
upper left clockwise. These four cases, shown in Figure 2, allow us
to approximate the area of the pixel covered by the fur. The formula
that we use for this calculation is

Figure 2: The four different hair-pixel intersections

Case 1:

Pixel 1= area of circle
area of pixel

Pixels 2-4 =0

Case 2:

Pixel 1= area of (circle−chord)
area of pixel

Pixel 2= area of chord
area ofpixel

Pixel 3-4= 0

Case 3:

Pixel 1= area of (circle−(right chord + lower chord - wedge))
area of pixel

Pixel 2= area of (right chord - wedge)
area of pixel

Pixel 3= area of wedge
area of pixel

Pixel 4= area of (lower chord - wedge)
area of pixel

Case 2:

Pixel 1= area of (circle−chord)
area of pixel

Pixel 2-3= 0

Pixel 4= area of chord
area ofpixel

The area of the circle and pixel are trivial to calculate exactly,
but the area of an arbitrary chord and wedge are somewhat more
expensive. Correct values involve both an inverse tangent and a
square root operation, which become expensive considering that
this calculation is being performed many times for each hair in
our volume. Our approach is to approximate both of these val-
ues, using an approximation from Harris and Stocker [1998] for the
chord value and our own approximation for the wedge value. Given
radiusr and maximum length of radius inside the chordm, the for-
mula for the area of the chord is

(1) A = 4
3 ·d ·m+ d3

4·m

wherem=
√

d(2r−d). According to Harris, this will have maxi-
mum error of .8% from the true chord area. Our approximation of
the wedge, given side lengthss1 ands2, is

(2) A = 1
4 ·π · (s1+s2

2)2

which is calculating a quarter the area of a circle. with radius the
average ofs1 ands2. We have not calculated error bounds on this
approximation.

Figure 3: Closeup of several procedurally generated hairs

The last major feature that we address is the number and type of
the hairs that we model. Both Kajiya [1989] and Gelder [1997]
note the importance of including two layers of fur in their models.
The undercoat is made of short hairs that form a dense layer around
the object, while the overcoat is composed of longer, thicker hairs.
Our approach renders both of these layers by changing the range
of widths that each hair starts with. The undercoat will start with
a very small width, and will peter out quickly as it goes upward.
Longer hairs start with a thicker base and will reach a much greater
distance from the base before thinning out. The inset in Figure 1
shows an example of our fur texture without any lighting. Color
is set by depth, so darker areas are undercoat, while light areas are
overcoat. Figure 1 shows a picture of our complete fur volume with
a single low-frequency light. Figure 3 shows a close up of a few
hairs.

2.2 Off-line Rendering

Our lighting method is based upon the lighting model for hair de-
scribed developed by Kajiya et al[1989]. Their method was com-
posed of 1) calculating the attenuation of scene lighting to each
voxel on a fur volume, 2) modeling the microgeometry of fur

through a lighting model, and 3) calculating the attenuation of the
light from the surface to the eye. Our current method only does
step 1, which effectivly means that we are calculating the sum illu-
minance to each point in the volume. Step 2 in their method con-
verts this value into sum luminous exitance, a step which we push
back from the precomputation to the reconstruction. This gives us
the ability to use heterogeneous lighting models that vary over po-
sition and/or time. Our current implementation, however, doesn’t
take advantage of this freedom and simply displays the light reach-
ing each voxel without any further computation. We perform Step
3 of their method at runtime through alpha blending on graphics
hardware. Note that our use of the radiometric terms illuminance
and luminous exitance are not strictly correct because our lighting
calculations are not limited to the hemisphere above a surface, but
are summed across the entire surrounding sphere.

The formula for attenuation of light along a raye + td through a
volume is

(3) T = e−r
∫ tstart

tend
ρ(e+td)

where T is the transparancy of the surface at a particular voxel and
ρ is the 3D density function. However, since we are working with a
’texel’ model as defined by Kajiya [1989] the microsurface version
of the formula is what we need. It is given by

(4) T
′
= e−r ∑tstart

tend
ρ(e+td)

This version is exactly the same as (3) except the integral is replaced
with a sum to take into account the fact that line integrals through
surfaces go to zero, which is not what we want. Instead, we sum
the contribution of each surface along the ray. Our implementation
of this lighting calculation takes the the vectord and the ’texel’
volume data and marches a ray from the center of each voxel in the
direction ofd until it leaves the volume, adding the density of each
voxel hit scaled by the length of ray that passed through it. Note
that this is in effect placing the light at∞ in the direction defined by
the vectord.

2.3 PRT Basis Functions

The Spherical Harmonics (SH) are an infinite set of spherical func-
tions that form an orthonormal basis over the sphere. The SH func-
tion with parametersl : l ∈ N andm :−l ≥m≤ l is defined by

(5) Ym
l (θ ,ψ) =

√
2l+1
4π · (l−m)!

(l+m)! ·eimψ ·Pm
l (cosθ)

wherePm
l are the associated Legendre polynomials. This formula-

tion isn’t quite what we want for this application, however, because
it will contain imaginary numbers ifm 6= 0. We can remedy this by
constructing the following piecewise defined function to take care
of those cases:

(6) Ym
l (θ ,ψ) =





√
2·Km

l ·cos(mψ) ·Pm
l · (cosθ), i f m > 0√

2·Km
l ·sin(−mψ) ·P−m

l ·cos(θ), i f m < 0
K0

l ·P0
l ·cos(θ), i f m = 0

whereKm
l =

√
2l+1
4π · (l−m)!

(l+m)! .

The SH functions are applicable to our problem because they allow
us to approximate arbitrary spherical functions. A sum of an un-
bounded number of SH basis functions with the correct coefficients
can approximate a function to any level of accuracy. In addition,
the frequency of the activity in a SH function is preportional to the
order (see Figure 4), so if we are interested only in a rough, low
frequency approximation we only need to compute a fixed number
of low-order SH functions to use as a basis.

Figure 4: Top: SH functions with (l,m) left to right of (0,0), (1,0),
(2,1), and (4, -3). Bottom: Fur volume lit with the SH function
above it. Brightness of lighting is scaled to enable comparison.

PRT [Sloan et al. 2002] takes these ideas and applies them to the
problem of real-time shadows. If we can calculate our lighting of
a complex object based upon SH basis function lighting, then we
can approximate any lighting environment by simply multiplying
each of our pre-computed lighting models by the correct scalar co-
efficient and summing the results together. This requires that we be
able to encode lighting into a SH basis, but it also requires that we
are able to approximate our target lighting environment in terms of
the SH basis functions that we have chosen, which the properties of
SH let us do fairly easily.

Our implementation starts by choosing the 5 lowest order SH func-
tions, which comes out to 25 distinct functions. We treat them as
spherical lights by using the infinite sphere with brightness scaled
according to the functions and compute lighting of our fur volume
in those environments, using the fur lighting algorithm discussed
above. To do this, we first compute a set of rays that are uniformly
distributed over the sphere, which we use to sample all the differ-
ent SH functions. We then compute the lighting for every point in
the fur volume for each sample of each SH function, storing the re-
sults in textures. Since each of our SH functions must have its own
unique space for storing the results of the lighting computation, we
need 25 textures for each shell. This gives us 32 x 25 = 800 single-
channel textures. In practice we pack 4 SH function lighting results
into a four-channel texture, giving us 32 x 7 = 224 different textures.

2.4 Reconstruction

Reconstruction of lighting in an arbitrary surface requires several
steps. They can be summarized as

1. Generate a spherical map of the target lighting environment

2. Project that map into our SH basis

3. Reconstruct the lighting for that projection using our pre-
computed lighting maps

There are many different ways to capture the target lighting of a
scene. It is possible to render a cubemap from the perspective of
the object, and sample the cubemap to create a spherical repre-
sentation, but this is outside the scope of our project. We use the
simple method of using a spherical function that produces one low-
frequency lobe of light, which we then rotate on a frame-by-frame
basis. This representation is passed on to the next stage of recon-
struction as the target lighting environment. Note that we could
create any functional lighting environment to use without chang-
ing any other pieces of code. The function that we use is based on

the function described by Green [2003] in his overview of the PRT
method.

Once the target lighting is available in SH coordinates, we sam-
ple it with our pre-computed uniformly distributed list of rays (the
same one which we used to approximate each SH basis function).
Projecting the spherical environmentenv(θ ,ψ) into the SH basis
ym

l (θ ,ψ) is then a simple weighted average over the sample rays,
given as

(7) cm,l = 1
rays ·∑0

raysenv(r i) ·Ym
l (r i)

wherecm,l is the coefficient for the corresponding SH basis func-
tion andr i is the ith sample ray in spherical coordinates. Computing
this for each of our 25 basis functions gives a 25 component vector.
If you know that the lighting of the object will only change rota-
tionally, then it is possible to precompute the lighting in the begin-
ning and simply rotate it to whatever position it is in for subsequent
frames. Our current implementation doesn’t perform efficient SH
rotation since our goal is to be able to put a furry object into an
arbitrarily changing lighting environment.

The last step in reconstruction is to multiply each of thecm,l co-
efficients by the corresponding SH basis functions’s lighting map
for each pixel on each shell. We perform this computation in a
fragment shader in graphics hardware by passing the seven four-
channel textures containing the lighting information and the seven
four-component vectors containing the coefficient information and
performing a 25-component dot product. The three extra spots in
the last vector can be used to store any other uniform information
that needs to be sent to the shader.

3 Results

Figure 5 shows several unique lighting environments captured in
real-time a few seconds apart. We ran all our tests on an Athlon
64 3000+ computer with 512 MB of ram and a GeForce 6800 SLI
setup. For a test volume of 64x64x32 we were able to achieve
40FPS at a resolution of 1280x1024.

The results clearly show the largest drawback of our method to be
how performance scales in an application. Since we are computing
a 25-component dot product for each fragment, things slow down
quickly when high resolutions and large areas of fur are used. This
is a much worse problem with our method than it is with other PRT
methods since most other methods are performing the dot product
for each vertex, not fragment. There are several ways that could
speed up our method, which we discuss in Future Work.

Figure 5: Four real-time views taken as a single light is rotated
around the front of the volume and up.

It is worth mentioning that our implementation has a small diffi-
ciency in the way in which it calculates the lighting, making the
light appear slightly brighter from one side of the fur when com-
pared to the same light on the other side. As of the writing of this
paper, this issue has not been fixed.

4 Future Work

Several elements of our implementation could be extended to re-
produce a more complete version of either PRT or fur rendering.
An improved lighting model would make the fur look much better.
Such a model could be based upon the Kajiya [1989] frame bundle
technique, or something else. An interesting approach would be to
store this information and pass it to the shader at runtime, which
would allow varying lighting models across the surface and/or a
single set of precomputed lighting maps for different styles of fur.
Such a technuque could vastly improve the realistic look of the fur,
and allow much more flexibility.

Two things that were done by Leyngal et al [2001] that could be
modified to work in our renderer were varying the color of fur over
the surface (ours is uniform) and creating ’fin’ textures to add sub-
stance when the shells are nearly parallel with the viewing direc-
tion. The dog model in their paper is a good example of the type of
effects that color variation can display, and combined with the re-
alistic lighting model that we present, could go a long way toward
photorealistic fur in real-time. The texture fins are really a neces-
sary part of a fur shell texture implementation, but our model adds
the extra complexity of having to perform PRT on the fin textures as
well as the shell textures. We plan to add fins to our model shortly.

Another major piece that we didn’t implement would be placing the
fur over a surface. Both Leyngal [?] and Kajiya [1989] perform this
step with their fur volumes, and both achieved visual success with
their respective methods. Leyngal had the advantage of being able
to perform this mapping onto the 3D model automatically with the
use of Lapped Textures [Praun et al. 2000], but both experimented
with ’combing functions’ that provided local changes to simulate
irregular areas of fur. Adding this ability to our method would be
an interesting project, and it is one which we plan to pursue. The
ultimate test would be to render something like the Kajiya [1989]
teddy bear in realtime.

There are also several directions that the project could be extended
in terms of PRT. We noticed while working with this project that
the higher level SH basis functions produced minimal values in the
lighting textures. It would be worth investigating the effect of re-
ducing the number of basis functions used on the realism of the fur.
It could be the case that the 4th order SH functions are not nec-
essary for a visually appealing fur rendering, which would signifi-
cantly reduce the processing required per-pixel. This would enable
much more scalability than in most other applications of PRT.

It would also be interesting to try a set of basis functions other than
the SH ones that we use. Investigating the results with Zonal Har-
monic or Wavelet basis functions would be an interesting endeav-
our. Specificaly, the ZH basis functions seem to be an interesting
choice given that they are easily rotatable and can be more efficient
in texture space when used correctly [Sloan et al. 2005]. This would
speed up rendering a furry object through pasting a small precom-
puted fur volume over a 3D surface since the ZH coefficients could
easily be rotated for each position on the surface.

References

GELDER, A. V., AND WILHELMS , J. 1997. An interactive fur
modeling technique. InProceedings of Graphics Interface 1997,
Graphics Interface.

GOLDMAN , D. B. 1997. Fake fur rendering. InProceedings of
SIGGRAPH 1997, ACM Press / ACM SIGGRAPH, ACM.

HARRIS, J. W., AND STOCKER, H. 1998. Handbook of Mathe-
matics and Computational Science. New York: Springer-Verlag.

KAJIYA , J. T., AND KAY, T. L. 1989. Rendering fur with three
dimensional textures. InACM SIGGRAPH Computer Graphics
Vol. 23, Issue 3, ACM SIGGRAPH.

KAUTZ , J., SLOAN , P.-P.,AND SNYDER, J. 2002. Fast, arbitrary
brdf shading for low-frequency lighting using spherical harmon-
ics. In Thirteenth Eurographics Workshop of Rendering, The
Eurographics Association, The Eurographics Association.

KRISTENSEN, A. W., AKENINE-MOLER, T., AND JENSEN,
H. W. 2005. Precomputed local radiance transfer for real-time
lighting design. InProceedings of SIGGRAPH 2005, ACM Press
/ ACM SIGGRAPH, ACM.

LENGYEL, J., PRAUN, E., FINKELSTEIN, A., , AND HOPPE, H.
2001. Real-time fur over arbitrary surfaces. InProceedings of
the 2001 symposium on Interactive 3D graphics, ACM Press /
ACM SIGGRAPH, ACM.

L IU , X., SLOAN , P.-P., SHUM , H.-Y., AND SNYDER, J. 2004.
All-frequency precomputed radiance transfer for glossy objects.
In Eurographics Symposium on Rendering 2004, The Euro-
graphics Association, The Eurographics Association.

LOKOVIC, T., AND VEACH, E. 2000. Deep shadow maps. InPro-
ceedings of SIGGRAPH 2000, ACM Press / ACM SIGGRAPH,
ACM.

PERLIN, K., AND HOFFERT, E. M. 1989. Hypertexture. InACM
SIGGRAPH Computer Graphics Vol. 23, Issue 3, ACM SIG-
GRAPH.

PRAUN, E., FINKELSTEIN, A., , AND HOPPE, H. 2000. Lapped
textures. InProceedings of SIGGRAPH 2000, ACM Press /
ACM SIGGRAPH, ACM.

R.GREEN. 2003. Spherical harmonic lighting: The gritty details.
In Proceedings of GDC, 2003, Game Developers Conference.

SLOAN , P.-P., KAUTZ , J., AND SNYDER, J. 2002. Precom-
puted radiance transfer for real-time rendering in dynamic, low-
frequency lighting environemnts. InProceedings of SIGGRAPH
2002, ACM Press / ACM SIGGRAPH, ACM.

SLOAN , P.-P., HALL , J., AND SNYDER, J. H. J.2003. Clustered
principal components for precomputed radiance transfer. InPro-
ceedings of SIGGRAPH 2003, ACM Press / ACM SIGGRAPH,
ACM.

SLOAN , P.-P., LIU , X., SHUM , H.-Y., AND SNYDER, J. 2003.
Bi-scale radiance transfer. InProceedings of SIGGRAPH 2003,
ACM Press / ACM SIGGRAPH, ACM.

SLOAN , P.-P., LUNA , B., AND SNYDER, J. 2005. Local, de-
formable precomputed radiance transfer. InProceedings of SIG-
GRAPH 2005, ACM Press / ACM SIGGRAPH, ACM.

WANG, R., TRAN, J., AND LUEBKE, D. 2005. All-frequency in-
teractive relighting of translucecnt objects with single and multi-
ple scattering. InProceedings of SIGGRAPH 2005, ACM Press
/ ACM SIGGRAPH, ACM.

