
Texture Synthesis using TSVQ and Target Re-synthesis

Anteneh Addis Anteneh∗
CMSC 635 - Project

Figure 1: Texture synthesis through TSVQ and re-synthesis.

Abstract

This paper presents a simple texture synthesis method that is fast,
efficient, and optimized. Given an input texture, the algorithm will
synthesize a texture image of specified size by matching output
image pixel neighborhoods with input pixel neighborhoods. The
pixel-neighborhood matching will be aided by the use of a Tree-
Structured Vector Quantization (TSVQ) method which will allow
the algorithm to avoid exhaustively searching the input image pix-
els. TSVQ method allows the algorithm to construct a binary tree
that will serve as a codeword for the pixel types in the input im-
age. Re-synthesis will be performed on output textures a number
of times to measure its effectiveness as an optimizing option. The
presented method combines ideas of synthesis by example with a
fast texturing algorithm.

Keywords: texture synthesis, re-synthesis

1 Introduction

This paper presents a method for efficient texture synthesis that
combines a number of different approaches in texture synthesis
with Wei and Levoy’s fast texturing algorithm at its core. The
method will implement a variation of the tree structured vector
quantization method as described in [Wei and Levoy 2000]. The
method will build the search tree based on the neighborhood value,
NV(pxy), for each pixelpxy in the sample texture. The neighbor-
hood value will be completed as a vector norm of the RGB values
in each neighborhood picture. Based on these values, the search

∗e-mail: anteneh1@umbc.edu

tree will be constructed along the lines of the median cut algo-
rithm [Heckbert 1982]. An initial target image,It , will be synthe-
sized on an input image of white noise. A second round of synthesis
will be performed using imageIt as the input instead of white noise,
producing the target imageT. The imageT will be re-synthesized
a number of times in the experimental phase to see the effects of
re-synthesis as an effective optimizing option.

The motivation for this work is to combine different aspects of syn-
thesis and vector quantization to have an algorithm that is both fast
and also produces quality synthesized images. The re-synthesis of
the initial target image aids in iteratively improving the similarity of
the target texture to the sample texture while preserving its differ-
ence/randomness that was dictated by the initial input noise image.
The next section of this paper will go over some of the related work
in this area with an emphasis on their importance to this work.

2 Related Work

This section will summarize previous work that this paper builds on
and other related papers.

Color Vector Quantization: Vector quantization is a process of
mapping vectors of the same size into a group of representative
vectors called code words to build a code map for the whole vector
space. The median-cut algorithm presented in [Heckbert 1982] is
a quantizing method that subdivides color space into smaller and
smaller bins from which a binary search tree is built from. The
original bin is the color space containing all pixels, and this bin is
split into two bins of more or less equal size based on the median
value of a range of color values. Wie and Levoy’s algorithm uses
the Tree-Structured Vector Quantization as defined in [Gresho and
Gray 1992] and uses the nearest point algorithm to match neighbor-
hoods [Nene and Nayar 1997].

Mutiresolution/Pyramid-Based Sampling: Heeger and Bergen
present a method for texture synthesis by matching the textural fea-
tures of an input texture to an input noise image [1995]. The algo-
rithm analyzes the input to get a number of texture parameter values
and store them in an image pyramid. DeBonet presents a synthesis
method through multiresolution pyramids to capture details of the
image at different levels [DeBonet 1997].

Pixel Based Synthesis:Wei and Levoy extend earlier exhaus-
tive search algorithms [Efros and Leung 1999] by implementing
a multi-resolution synthesis pyramid to allow the use of smaller
neighborhood sizes [Wei and Levoy 2000]. They also use tree-
structured vector quantization (TSVQ) to accelerate the runtime
of the algorithm. They have shown that synthesis results us-
ing TSVQ are comparable in quality to the exhaustive search
method but with a synthesis time magnitudes faster than the lat-
ter. Ashikhmin [2001] reduces the search state by using informa-
tion from earlier neighborhood comparisons. Hertzmann et. al.
present a synthesis method by which an input image is synthesized
through image analogies of input texture-synthesized texture exam-
ple sets [2001].

Patch Based Synthesis:These methods perform synthesis by using
patches from the sample texture. Kwatra et. al. present a method of
synthesis where irregular patches are copied to the target image and



seams are corrected through a graphcut algorithm [2003]. Praun
et. al. present a similar method where an arbitrary surface mesh is
covered by repeatedly pasting texture patches from the input[2000].
Seams are corrected using alpha blending.

Pixel-Patch/Hybrid Synthesis: Patch-based synthesis methods
have proved to be fast and efficient algorithms for texture syn-
thesis. Pixel-based searches are in most cases slower put pro-
vide the advantage of optimal target images. Pixel-based im-
ages have the disadvantage of blurring fine detail, while patch-
based methods usually produce unwanted textures along overlap-
ping seams. Nealen and Alexa’s method presents a patch-based
synthesis method that uses pixel-based re-synthesis to eliminate er-
rors in overlapped patch regions [2003]. Ashikhmin’s pixel-based
method also includes the use of irregular shaped patches to elimi-
nate synthesis errors [2001].

3 Implementation

As mentioned above, this work will be a variation on the TSVQ
method of the WL algorithm. The method has three different
phases: 1) the binary search tree is constructed from the input im-
age, 2) a white noise image is converted into the initial synthesized
imageIt by using the search tree, 3) re-synthesis is implemented
once, and repeated if necessary.

3.1 Tree Construction and Synthesis

The completed search tree is a binary tree that is used as the code-
book to classify all of the pixels in the sample image with respect
to its neighborhood. This section will first look at initial attempts
at tree construction. Then a working implementation for the search
tree will be discussed.

3.1.1 Initial Attempts at Tree Construction

Initial attempts of tree construction focused on quantizing neigh-
borhoods into a linear value. The trees were constructed such that
leaf nodes had a number of pixels available to choose from. When
a search reaches a leaf it may choose from one of those pixels in a
number of ways to complete the match. Figure 2 shows a completed
tree with median values on top of each node. One of the goals of
this project is to develop a neighborhood classification method that
is efficient and computationally inexpensive. An important part of
this classification step that was explored in the initial stages was
defining an equation or an algorithm that will adequately represent
the characteristics of a single neighborhood. A number of classifi-
cation methods have been explored, all of them based on the RGB
values inside a neighborhood vector.

Figure 2: A tree with minimum bin size = 3.

The first method explored was to use the ranges of color values at
each position in the neighborhood vector. The color (red, green, or
blue) with the highest range at position i in the neighborhood vector
becomes the splitting color and the median of that range becomes
the splitting median. This method proved to be a poor representa-
tion of neighborhood values as searches went to one or a few pixel
values and resulting in a single color image after the first few rows.

A second group of methods were considered by applying the vector
norm to different combinations of values in the neighborhood vec-
tors. The vector norm value of each L-shaped neighborhood around
each pixel was calculated. The neighborhood value for each pixel
was calculated by applying the L2 norm formula first to each RGB
value, and then to these values over the vector space. The neighbor-
hood value calculated using this method was not a good represen-
tation of a neighborhoods as can be seen in example synthesis run
shown in Figure 3.

Figure 3: Synthesis Results from TSVQ using L2 norm.

A third method that was explored was to use the RGB values in
each neighborhood pixel, and maintaining each color as a separate
value to identify each neighborhood. To achieve this, the red, green,
and blue values for each pixel in the neighborhood were put into a
vector and the vector norm for each was calculated. This resulted
in an [R, G, B] like representation for each neighborhood. These
values were used to construct the search tree using a median-cut
like algorithm for the color value with the highest range at each
level of recursion. The results for this method were also poor but
showed improvement from previous methods. Results from this
method are shown in Figure 4 and Figure 5.

3.1.2 Tree Construction using limited neighborhood com-
parison

The final version of the search tree was constructed by comparing
the pixel neighborhoods in the sample image to each other. After
the initial methods were tried as mentioned above, it became clear
that some level of comparison was necessary to construct a mean-
ingful search tree. The algorithm described is implemented along
the lines of [Schmidt 2005].The tree was constructed by clustering
similar nodes together and then iteratively dividing those nodes un-
til a leaf node is reached. In this implementation of the tree each
leaf node contains either one or two pixel matches (in which case
the target neighborhood would choose the best match).

Bins:A bin is a node in the search tree. Each bin has a pointer to its
left and right child. In addition this node has a divider pixel - the
pixel coordinate which specifies the neighborhood associated with
each bin around the specified pixel. A bin also contains a list of
pixels before it is split.



Figure 4: Synthesis results from TSVQ using RGB-like representa-
tion.

Building the Tree: The root bin is defined to contain no divid-
ing neighborhood vector and is initialized to a neighborhood vector
with zero values for each pixel color. The root bin also contains
all the pixels of the original sample image. To generate the first
two children, all pixels contained within the bin are used to obtain
the neighborhoods associated with them (in this implementation all
sample neighborhoods are constructed ahead of time). Each neigh-
borhood is compared to the dividing neighborhood using sum of
squared differences equation (L2 difference). The neighborhood
with lowest difference value will become the left/nearest bin while
the neighborhood with the highest difference value will become the
right/farthest bin. After the left and right nodes are initialized the
pixel values contained within the parent node are split and trans-
ferred into these bins. Pixels are split by calculating their differ-
ence with the left and right bins and transferring them to the node
they are closest to. The above procedure is performed recursively
on child nodes until a node either has no more pixels in its pixels
list or only one.

Searching the Tree and Matching a Pixel:After the tree has been
constructed, the algorithm can begin its synthesis phase. For each
pixel in the output image, a target neighborhoodTN of size n is
build around it.TN is used to search the tree through comparisons.
At each bin the difference between TN and the dividing neighbor-
hood of a child node. The search algorithm will iteratively search
the tree by following the path of a neighborhood it is closest to be-
tween each child node. When a search reaches a leaf node it will
return a matching pixel. If a leaf node contains only one pixel in
addition to its divider pixel, two more comparisons will be made
with TN to find the best match.

3.2 Texture Re-synthesis

A second round of synthesis is conducted on the first synthesized
image in the same way as described above. The motivation for do-
ing this is to optimize the synthesized image so that any irregular-
ities caused during the first run of optimization will be minimized
during multiple runs as the synthesized texture becomes more re-
fined since its current pixel neighborhoods are more similar to the
input image. The final implementation of this algorithm contains

Figure 5: Synthesis results from TSVQ using RGB-like representa-
tion.

three synthesis iterations.

4 Results and Analysis

Testing was conducted on different sets of images chosen from the
seven class of images on (http://www.cns.nyu.edu/ eero/texture).
The runtimes for tree construction and synthesis vary depending
on the neighborhood size and the size of the output image. The av-
erage runtime for synthesizing (with no re-synthesis) an image of
size 128x128 with a neighborhood size of 15 is about 5 minutes.
The average time to construct the tree is about 80 seconds. With
re-synthesis the runtimes seem to increase according to the number
of iterations, ranging on average from 14 - 25 minutes for three syn-
thesis iterations. The table in Figure 6 shows the rounded execution
times (in minutes) along with the neighborhood sizes used for the
example result images used in this paper.

Figure 6: Execution times for different textures.

Example synthesis images using the algorithm described above are
shown staring from Figures 7. For all figures the top images are the
sample textures while the others are results of re-synthesis shown in



order by the arrows. The TSVQ search algorithm produces good re-
sults for most textures although it is not optimal as compared to the
exhaustive search comparison method. The result of re-synthesis
is mixed for different types of textures. Figure 7 is a poor image
for the initial synthesis and re-synthesis does not improve it any-
more. Figure 8 is much better with the original synthesized image
being greatly optimized over iterations. The same goes for Fig-
ure ??, with the heart shaped splotches decreasing in size. The
color textures produce good results with Figure 10, the least helped
by re-synthesis. In Figure 11 re-synthesis optimizes the texture by
correcting errors at the beginning of synthesis. The third iteration
seems to be giving the texture more of its original randomness. Syn-
thesis results for inhomogeneous textures are very poor, with the
re-synthesis worsening the target texture. Figure 15 is also a poor
result with re-synthesis not being able to have much effect. In Fig-
ure 16 re-synthesis has eliminated some of the blurring along the
edges of the target image, with the optimal one being the second it-
eration. Re-synthesis also helps in Figure 18 with the target image
gaining more of the original pattern.

In general the re-synthesis step has optimized the target image in
varying degrees for various texture types. But the amount of time
it takes for re-synthesis means that we can not continue to perform
numerous iterations without eventually losing the advantage of fast
texturing through TSVQ. Other optimization methods in combina-
tion with re-synthesis may be used to perform a minimal number of
optimizations and to gain the optimal target image.

Figure 7: Results for art-non-periodic1.

Figure 8: Results for art-non-periodic2.

5 Summary and Future Work

Summary: This paper presents a method to combine Wei and

Figure 9: Results for art-periodic.

Figure 10: Results for color1.

Levoy’s fast texturing algorithm using search trees with a simple
optimization heuristic. The re-synthesis phase allows for the opti-
mization of a target texture incorporating the ideas in [Ashikhmin
2001] [Nealen and Alexa 2003] of using analogies of and pre-drawn
target resembling textures. The search tree is constructed by utiliz-
ing simple L2 difference comparison between pixel neighborhoods
in the sample image. The search is also performed by calculating
very few number of L2 comparisons (as compared to the exhaustive
method) to reach a matching neighborhood and pixel. This work
has also shown that in most cases re-synthesis of target textures can
be used as an option for texture optimization. But the amount of
time re-synthesis takes also makes it only a partial optimizing op-
tion in combination with other algorithms.

Future work: Patch-based optimizations are strong options to use
with a pixel based synthesis as they have proven to be much faster
and equally optimal in general. One optimization method may in-
volve only a second round of re-synthesis after a patch-based algo-
rithm has fixed any trouble areas in the initial target texture.

References

ASHIKHMIN , M. 2001. Synthesizing natural textures. InProceed-
ings of the 2001 symposium on Interactive 3D graphics, 217–
226.

DEBONET, J. S. 1997. Multiresolution sampling procedure for
analysis and synthesis of texture images. InProceedings of the
International Conference on Computer Graphics and Interactive
Techniques, 361–368.



Figure 11: Results for color2.

Figure 12: Results for inhomogeneous1.

EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis by
non-parametric sampling. InProceedings of the IEEE Interna-
tional Conference on Computer Vision, 1033–1038.

GRESHO, A., AND GRAY, R. M. 1992. Vector Quantization and
Signal Compression. KluwerAcademic Publishers.

HECKBERT, P. S.1982. Color image quantization for frame buffer
display. 297–307.

HEEGER, D. J.,AND BERGEN, J. R.1995. Pyramid-based texture
analysis/synthesis. InProceedings of the International Confer-
ence on Computer Graphics and Interactive Techniques, 229–
238.

HERTZMANN, A., JACOBS, C. E., OLIVER , N., CURLESS, B.,
AND SALESIN, D. H. 2001. Image analogies. InProceedings
of the 28th annual conference on Computer graphics and inter-
active techniques, 327–340.

KWATRA , V., SCHDL, A., ESSA, I., TURK, G., AND BOBICK, A.
2003. Graphcut textures: image and video synthesis using graph
cuts. InProceedings of SIGGRAPH, 277–286.

NEALEN, A., AND ALEXA , M. 2003. Hybrid texture synthesis. In
Proceedings of the 14th Eurographics workshop on Rendering,
97–105.

NENE, S., AND NAYAR , S. 1997. A simple algorithm for nearest
neighbor search in high dimensions. InProceedings of IEEE
Transactions on Pattern Analysis and Machine Intelligenc, 989–
1003.

PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2000. Lapped
textures. InProceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, 465–470.

Figure 13: Results for inhomogeneous2.

Figure 14: Results for photo-pseudo-periodic1.

SCHMIDT, J. 2005. Practical implementation of a texture synthesis
algorithm. InProceedings of 9th Central European Seminar on
Computer Graphics.

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis using
tree-structured vector quantization. InProceedings of the SIG-
GRAPH 2000, 479–488.



Figure 15: Results for photo-pseudo-periodic2.

Figure 16: Results for photo-random1.

Figure 17: Results for photo-random2.

Figure 18: Results for photo-structured.


