

Lighting & Illumination

® Interaction of light with surfaces
m [ocal [llumination

¢ Each point independent of every other
m Global [llumination

¢ Lighting at one point affects others

Lights

m L=P —Pg=wgp —WDg
® Directional: (x, vy, z, 0)

¢ Far enough away that rays are parallel
m Pomnt: (Xx,y, z, 1)

¢ Shines 1 all directions from point

+ Normally no falloff with distance

¢ Physical: Attenuate [, by 1/(1LsL)

» May require I, > 1

Environment map

m Approximate light from all directions as
seen by each point on surface

m [nstead use light from all directions as
seen by one representative point

m Distant environments

B Direction-based texture map

Direction-based mapping

m Vector R = (x,y,2)
m Cube map
¢ Six 1mages on cube faces
¢ Divide other two components by largest
¢ Say 1t 18 y: (s,t,q) = (X, z, V)
oS =x/y; T=2zly
¢ Scale mto texture: (S+1)/2, (T+1)/2

Direction-based mapping

® Sphere map
¢ (s,t) = (x,y) on shiny sphere refl. V to R
oV =(0,0—1)
ofx,y,2)=x>+y*+22-1=0
¢ N half way between V and R
sN = (V+R)/IVHR|=(2 x, 2 v, 2 7)/2

(8,1,9) = X,y sqri(x+y=Hz-1)?)

Direction-based mapping

m Parabolic maps

y Need two
» V=(0,0,1); 1(x,y,2) = z + (x* + y)/2=0
- * V= (DD—U f(@/,_;):A—(AZF/)// 0

> (5,69) = (%, y,z—1)
» (s.t,9) = v, L —2)

Shadows

m Occluder blocks light
m Point lights: hard shadows
m Area lights: soft shadows
¢ Umbra
¢ blocked
¢ Penumbra
¢ partially blocked

Blinn method

m Hard shadows on planar surfaces
m Project copy of object onto plane

¢ Extra modeling transform matrix
m Avoid occlusion problems

¢ Depends on rendering algorithm

¢+ Common to just translate “shadow’
object slightly off surface

Shadow map

® |In advance

Shadow map

® To do shadow
¢ Transform surface posns to light space
¢ Project texture onto surface

Shadow map

® Numeric problems
¢ L1t surface mistakenly 1in shadow
¢ Shadow bias: constant € in comparison
¢ Store average ot 1st & 2nd depth

m Filtering
¢ Blending depth values does not work
¢ Percentage closer filtering

Shadow volumes

® Occluder creates wedge of shadow

Stencil shadow volumes

m OpenGL Stencil increment & decrement
¢ Draw object
¢ Draw front-facing shadow polygons
¢ Increment stencil for each
¢ Draw back-facing shadow polygons
» Decrement stencil for each
¢ Non-zero stencil = m shadow

Soft shadows

® Many point samplees

BRDF

m Bidirectional
¢ Incoming & outgoing light directions
m Reflectance
¢ Attenuation of reflected light
+ Not transmission or emission
m Distribution
¢ Light m distributed to outgoing directions
¢ Don’t create new: light
® Function

BRDF

m [n terms of local surface coordinates
¢ Only above surface
¢ Direction: ¢, 0 or U, V (N)
* 1(9;, 6;, 9,, 0,)

m Polarv/spherical plot N\

Physically plausible BRDF

m Positive everywhere

Decomposition

m Often decompose mto components

Rendering Equation

- I((I)oae) — -[f(q)iaeiaq)oae) IL((I)ia 6) COS (I)i del d(l)l
¢ Add up all the light, modulated by BRDF
J cos ¢; db, d¢; = spherical int 1

» COS cpf = NeL

Microfacet models

m Microscopic reflective facets
m Probability distributions

¢ Reflectance: Chance a facet has normal H=V+L
¢ Shadowing: Chance another facet blocks L
Masking: Chance another facet blocks V.

Cook-Torrance

m Symmetric V facets

Reflectance map

m Diffuse: I(N) = texture
m Specular: I(H) = texture

¢ Filtered environment map
+ BRDF as Filter

Homomorphic Factorization

= {(V,L) =1(vo) £; (v) £, (Vo) ... £, (Vy)
m Pickv,...v,, functions of V & L

Homomorphic + Microfacet
m Factor into £(V), {(H), {(L)

B {(V)=masking = {(L) = shadowing
m {(H) = reflectance

o W
- L

Spherical harmonics

m [ike Fourier transform for spheres

Spherical harmonics

m Simulate lighting using harmonic basis functions
as lighting environment

¢ Take as long as necessary to find reflectance,
shadowing, multi-bounce, etc.

B Store results in separate texture for each basis
B Decompose real environment into SH basis

B Scale per-pixel texture results by SH basis
cocfiicients

Spherical harmonics

