CMSC 635

Global Illumination

Global Illumination

- Local Illumination
 - light surface eye
 - Throw everything else into ambient
- Global Illumination
 - light surface surface … eye
 - Multiple bounces

- UNIVERSITY
- IN MARYLAND

Global Illumination

"Backward" algorithms

- Follow light transport: eye to light
 - Traditional ray tracing
 - Follow primary reflection
 - Path tracing
 - Follow other rays
 - Monte-carlo integration

IN MARYLAND

"Forward" algorithms

- Follow light transport: light to eye
 - Lights are emitters

ONORS

IVERSITY

MARYLAND

1 N

- Everything else both emitter & receiver
- Integrate bounce to bounce
 - All surfaces for each bounce (*radiosity*)
 - All bounces for one photon (*photon map*)

Radiosity

- Based on radiant heat transport
 - Diffuse surfaces only
 - Try to find steady state solution

Sample Locations

- Usually need more samples than provided by geometric patches
 - Uniform subdivision
 - Adaptive regular subdivision
 - Adaptive irregular subdivision

Discontinuity Meshing

Lischinski, Tampieri and Greenburg, "Combining Hierarchical Radiosity and Discontinuity Meshing", *SIGGRAPH 93*

AN HONORS UNIVERSITY

I N

MARYLAND

Discontinuity Meshing

Lischinski, Tampieri and Greenburg, "Combining Hierarchical Radiosity and Discontinuity Meshing", *SIGGRAPH 93*

UMBC

UNIVERSITY

MARYLAND

HONORS

AN

I N

Interactive Rendering

- Diffuse surfaces only
 - viewpoint independent
- Pre-compute and store radiosity
 - As patch/vertex colors
 - As texture

ORS

ERSITY

0 N

- Separate solution for each light
 - Linear combination to change lights

Two pass

- Radiosity for diffuse
- Ray tracing for reflection
- Doesn't handle radiosity of specularly reflected light

