CMSC 635

Sampling and Antialiasing

Abstract Vector Spaces

- Addition
 - \bullet C = A + B = B + A
 - (A + B) + C = A + (B + C)
 - given A, B, A + X = B for only one X
- Scalar multiply
 - \bullet C = a A
 - \bullet a (A + B) = a A + a B; (a+b) A = a A + b A

Abstract Vector Spaces

■ Inner or Dot Product

$$\bullet b = a (A \bullet B) = a A \bullet B = A \bullet a B$$

$$\bullet$$
 A \bullet A \geq 0; A \bullet A = 0 iff A = 0

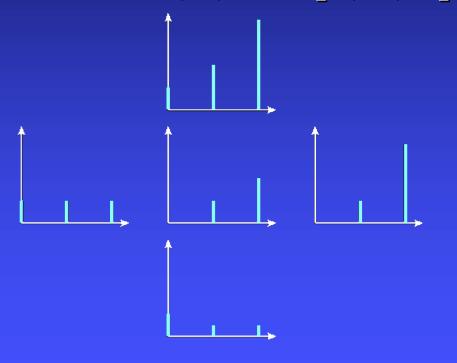
$$A B = (B A)^*$$

Vectors and Discrete Functions

Vector	Discrete Function
V = (1, 2, 4)	$V[I] = \{1, 2, 4\}$
a V + b U	a V[I] + b U[I]
V • U	$\sum (V[I] U^*[I])$

Vectors and Discrete Functions

 \blacksquare 2^I in terms of 1, I, I² = [1,.5,.5]



Vectors and Discrete Functions

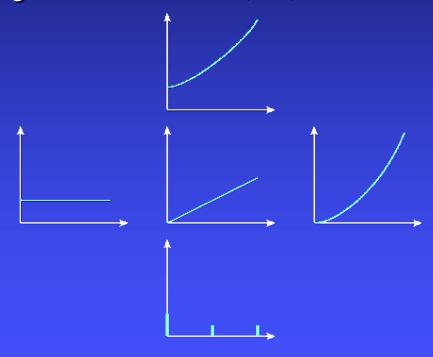
■ 2^I in terms of 1, I^{.5}, I², I^{1.5}, I⁴

Vectors and Functions

Vector	Discrete	Continuous
V	V[I]	V(x)
a V + b U	a V[I] + b U[I]	a V(x) + b U(x)
V•U	$\sum V[I] U^*[I]$	$\int V(x) U^*(x) dx$

Vectors and Functions

 \blacksquare 2^x projected onto 1, x, x²



Function Bases

- \blacksquare Time: $\square(t)$
- Polynomial / Power Series: tⁿ
- Discrete Fourier: $e^{i \pi t K/N} / \sqrt{2N}$
 - ◆ K, N integers
 - ♦ t, K [[-N, N]
 - (where $e^{i\Box} = \cos \Box + i \sin \Box$)
- Continuous Fourier: $e^{i \Box t} / \sqrt{2\pi}$

Fourier Transforms

	Discrete	Continuous
	Time	Time
Discrete Frequency	Discrete Fourier Transform	Fourier Series
Continuous Frequency	Discrete-time Fourier Transform	Fourier Transform

Convolution

- \blacksquare f(t) g(t) \square F(\square) * G(\square)
- lacksquare g(t) * f(t) \Box F(\Box) G(\Box)
- Where $f(t) * g(t) = \int f(s) g(t-s) ds$
 - ◆ Dot product with shifted kernel

Filtering

- Filter in frequency domain
 - ◆ FT signal to frequency domain
 - ◆ Multiply signal & filter
 - ◆FT signal back to time domain
- Filter in time domain
 - ◆ FT filter to time domain
 - ◆ Convolve signal & filter

Ideal

- Low pass filter eliminates all high freq
 - box in frequency domain
 - ◆ sinc in spatial domain (sin x / x)
 - ◆ Possible negative results
 - ◆ Infinite kernel
- Exact reconstruction to Nyquist limit
 - ♦ Sample frequency $\ge 2x$ highest frequency
 - ◆ Exact only if reconstructing with sync

Sampling

Multiply signal by pulse train

Reconstruction

- Convolve samples & reconstruction filter
- Sum weighted kernel functions

Filtering, Sampling, Reconstruction

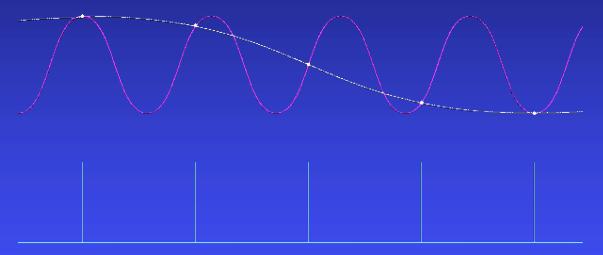
- Steps
 - ◆ Ideal continuous image
 - Filter
 - ◆ Filtered continuous image
 - Sample
 - Sampled image pixels
 - Reconstruction filter
 - Continuous displayed result

Filtering, Sampling, Reconstruction

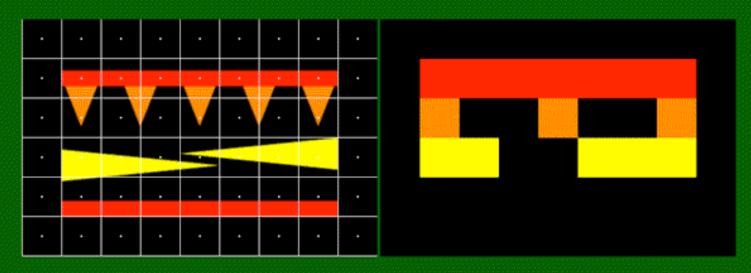
- Combine filter and sample
 - ◆ Ideal continuous image
 - Sampling filter
 - ◆ Sampled image pixels
 - Reconstruction filter
 - ◆ Continuous displayed result

Aliasing

■ High frequencies alias as low frequencies



Aliasing in images

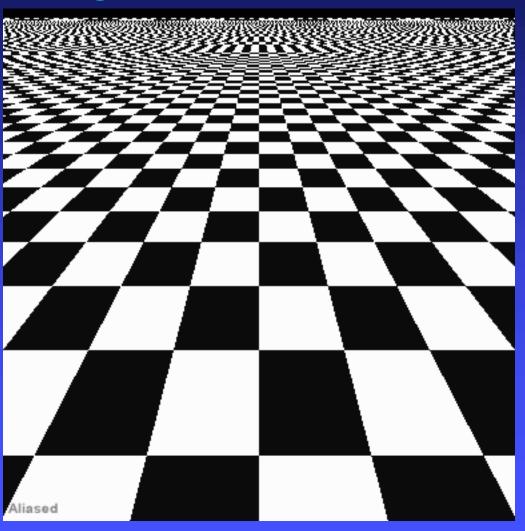


Original

Rendered

Loss of detail

Aliasing in animation



Antialiasing

- Blur away frequencies that would alias
- Blur preferable to aliasing
- Can combine filtering and sampling
 - ◆ Evaluate convolution at sample points
- Filter kernel size
 - → IIR = infinite impulse response
 - ◆ FIR = finite impulse response

Analytic Area Sampling

- Compute "area" of pixel covered
- Box in spatial domain
 - ◆ Nice finite kernel
 - easy to compute
 - → sinc in freq domain
 - Plenty of high freq
 - still aliases

Analytic higher order filtering

- Fold better filter into rasterization
 - ◆ Can make rasterization much harder
 - ◆ Usually just done for lines
 - Draw with filter kernel "paintbrush"
- Only practical for finite filters

Supersampling

- Numeric integration of filter
- Grid with equal weight = box filter
- Other filters:
 - ◆ Grid with unequal weights
 - ◆ Priority sampling
- Push up Nyquist frequency
 - ◆ Edges: ∞ frequency, still alias

Adaptive sampling

- Numerical integration with varying step
- More samples in high contrast areas
- Easy with ray tracing, harder for others
- Possible bias

Stochastic sampling

- Monte-Carlo integration of filter
- Sample distribution
 - ◆ Poisson disk
 - ◆ Jittered grid
- Aliasing Noise

Which filter kernel?

- Finite impulse response
 - ◆ Finite filter
 - ◆ Windowed filter
- Positive everywhere?
- Ringing?

Which filter kernel?

- Windowed sync
- Windowed Gaussian (~0 @ 6□)
- Box, tent, cubic

Resampling

- Image samples
 - ◆ Reconstruction filter
- Continuous image
 - ◆ Sampling filter
- Image samples