
CMSC611: Advanced Computer Architecture 
Extra Credit Homework 2 Solutions 

a) Hex address to Binary address: 
(5F852B24)16 = (0101 1111 1000 0101 0010 1011 0010 0100)2  
Byte offset:  1 word = 4 bytes  2byte offset = 4  Byte offset = 2 bits 
Word offset:  1 word = 4 bytes = 32 bits 2word offset = Number of words in each block 
Index:   2index = Cache size ⁄ (Block size × Number of set associativity) 
Tag:   Tag = 32 – Byte offset – Word offset – Index 

L1 instruction cache:  
Byte offset:  1 word = 4 bytes  2byte offset = 4  Byte offset = 2 bits 
Word offset: 256 bits = 32 bytes = 8 words 2word offset = 8  Word offset = 3 bits 
Index:   2index = Cache size ⁄ (Block size × Number of set associativity) = (32 × 1024) ⁄ (32 × 4) = 256  Index = 8 bits 
Tag:  Tag = 32 – Byte offset – Word offset – Index = 32 – 2 – 3 – 8 = 19 bits 

L1 data cache:  
Byte offset:  1 word = 4 bytes  2byte offset = 4  Byte offset = 2 bits 
Word offset: 256 bits = 32 bytes = 8 words 2word offset = 8  Word offset = 3 bits 
Index:   2index = Cache size ⁄ (Block size × Number of set associativity) = (32 × 1024) ⁄ (32 × 8) = 128  Index = 7 bits 
Tag:  Tag = 32 – Byte offset – Word offset – Index = 32 – 2 – 3 – 7 = 20 bits 

L2 cache:  
Byte offset:  1 word = 4 bytes  2byte offset = 4  Byte offset = 2 bits 
Word offset: 64 bytes = 16 words  2word offset = 16  Word offset = 4 bits 
Index:   2index = Cache size ⁄ (Block size × Number of set associativity) = (256 × 1024) ⁄ (64 × 8) = 512  Index = 9 bits 
Tag:  Tag = 32 – Byte offset – Word offset – Index = 32 – 2 – 4 – 9 = 17 bits 

L3 cache:  
Byte offset:  1 word = 4 bytes  2byte offset = 4  Byte offset = 2 bits 
Word offset: 64 bytes = 16 words  2word offset = 16  Word offset = 4 bits 
Index:   2index = Cache size ⁄ (Block size × Number of set associativity) = (8 × 1024 × 1024) ⁄ (64 × 16) = 8192 Index = 13 bits 
Tag:  Tag = 32 – Byte offset – Word offset – Index = 32 – 2 – 4 – 13 = 13 bits 
 
 
 



Cache level Tag Index 
Offset 

Size of read 
Word offset Byte offset 

L1 instruction cache 0101 1111 1000 0101 001 0 1011 001   0 01 00 1 word 
L1 data cache 0101 1111 1000 0101 0010 1011 001   0 01 00 1 word 

L2 cache 0101 1111 1000 0101 0          010 1011 00 10 00 00 8 words 
L3 cache 0101 1111 1000 0   101 0010 1011 00 00 00 00 16 words 

	  
Memory Read Remainder of address L3 sub-block Byte offset in read Size of Read 

Memory (0) 0101 1111 1000 0101 0010 1011 00 00 0 000 2 words 
Memory (1) 0101 1111 1000 0101 0010 1011 00 00 1 000 2 words 
Memory (2) 0101 1111 1000 0101 0010 1011 00 01 0 000 2 words 
Memory (3) 0101 1111 1000 0101 0010 1011 00 01 1 000 2 words 
Memory (4) 0101 1111 1000 0101 0010 1011 00 10 0 000 2 words 
Memory (5) 0101 1111 1000 0101 0010 1011 00 10 1 000 2 words 
Memory (6) 0101 1111 1000 0101 0010 1011 00 11 0 000 2 words 
Memory (7) 0101 1111 1000 0101 0010 1011 00 11 1 000 2 words 

 
  



b) HT: hit time 
MR: miss rate 
MP: miss penalty 
Memory Access Cycle = ceil(13.75ns× 2.6GHz) = ceil(35.75) = 36 cycles   

Average Memory Access Time = HTL1 data cache + MRL1 data cache × HTL2 cache + MRL2 cache × HTL3 cache + MRL3 cache × MPL3 cache( )⎡⎣ ⎤⎦
= 4 + 0.7%× 10 + 4%× 40 +12%× (36 × 8)( )⎡⎣ ⎤⎦  cycles
= 4 + 0.7%× [10 + 4%× (40 +12%× 288)] cycles
= 4 + 0.7%× [10 + 4%× 74.56] cycles
= 4 + 0.7%×12.98 cycles
= 4 + 0.09 cycles
≈ 4.09 cycles

  

Actual Access Time = Access TimeL1 data cache + Access TimeL2 cache + Access TimeL3 cache + Access TimeMemory

= 4 +10 + 40 + 36 × 8
= 342 cycles

= 342
2.6

 ns ≈131.5 ns

 

c) The code with loops will benefit from the Loop Stream Detector. Generally, when a Core-based CPU is running a loop detected by LSD, the CPU 
doesn’t need to fetch the required instructions again from the L1 instruction cache, because they have already been close to the decode unit in 
LSD. Instructions can be simply streamed out from LSD to the decode unit. In addition, the CPU actually turns off the fetch and branch prediction 
units while running a detected loop, making the CPU to avoid possible misprediction penalties and save some power. 

On a Nehalem-based CPU, LSD has been moved to after the decode unit. So, instead of holding instructions, LSD holds micro-operations 
provided by the decode unit. When the CPU is running a loop, it doesn’t need to decode the instructions present in the loop, because they have 
already been decoded and stored inside LSD. The CPU can now turn off the decode unit together with the fetch and branch prediction units when 
running a detected loop, making the CPU to be even more efficient than the Core-based CPU. Therefore, the location change of LSD improves the 
performance of the Nehalem-based CPU comparing to the Core-based CPU. 


