
CMSC611: Advanced Computer Architecture
Extra Credit Homework 1 Solution

1. In order to compute the weighted average CPI, we need to find the clock cycles for each
instruction type and the total instruction count. Then, we calculate the weighted average as

CPIaverage =
ClockCyclestotal

InstructionCounttotal
=

ClockCyclesk × InstructionCountk
k=1

K

∑
InstructionCounttotal

where K is the number of instruction types. Based on the initial values of ARRAY[100] and
ARRAY[200], the loop “AGAIN” only iterates once. So, we only need to count each instruction
once for calculating the clock cycle, and the number of total instruction count is 12. Details of
each instruction and its corresponding clock cycle are listed on the following table:

Instruction Clock Cycles

MOV AX, ARRAY[100] 12

ADD AX, 128 4

MOV CX, 4 4

MUL CX 118

MOV ARRAY[100], AX 13

AGAIN: MOV AX, ARRAY[200] 12

SUB AX, 256 4

MOV ARRAY[200], AX 13

MOV CX, AX 2

MOV AX, ARRAY[100] 12

SUB CX, AX 3

JCXZ AGAIN 18

So, the weights average CPI is

CPIoriginal =
12 + 4 + 4 +118 +13+12 + 4 +13+ 2 +12 + 3+18

12
= 215
12

≈17.92

2. With the given operation mode of ALU, the total instruction count of the original code could
be reduced by using the following code:

 MOV AX, ARRAY[100]
 ADD AX, 128
 MOV CX, 4
 MUL CX
 MOV ARRAY[100], AX
 AGAIN: SUB ARRAY[200], 256
 MOV CX, ARRAY[200]
 SUB CX, AX
 JCXZ AGAIN

We still count each instruction once for calculating the clock cycles, and the number of total
instructions for the new code is 9. Details of each instruction and its corresponding clock cycle
are listed on the following table:

Instruction Clock Cycles

MOV AX, ARRAY[100] 12

ADD AX, 128 4

MOV CX, 4 4

MUL CX 118

MOV ARRAY[100], AX 13

AGAIN: SUB ARRAY[200], 256 25

MOV CX, ARRAY[200] 12

SUB CX, AX 3

JCXZ AGAIN 18

So, the weights average CPI is

CPInew = 12 + 4 + 4 +118 +13+ 24 +12 + 3+18
9

= 209
9

≈ 23.22

Assume the clock cycle time is t, and it does not change during the execution of the original and
the new code. The speedup of the new code is

Speedup =
ExecutionTimeoriginal
ExecutionTimenew

=
ClockCyclesoriginal ×ClockCycleTimeoriginal
ClockCyclesnew ×ClockCycleTimenew

= 215t
209t

≈1.03

Therefore, the new code improves the performance of the original one by 1.03x in execution time.

