
CMSC611: Advanced Computer Architecture
Extra Credit Homework 3

All parts of this assignment will use the following data, taken from a (real) run of valgrind on an
application. The numbers given are inclusive (including all calls of the function, and any function
that it calls). Assume two levels of cache, an L1 hit time of 1 cycle, L2 hit time of 40 cycles,
memory access time of 200 cycles, and a branch penalty of 10 cycles. Changes mentioned in any
question apply for that question only, and should not be carried forward to later questions.

main():

Event Short Name Count
Calls Cm 1
Instruction Fetch Irm 7,371,916,291
Data Read Access Drm 2,132,375,654
Data Write Access Dwm 692,582,065
L1 Instruction Fetch Misses I1mrm 2,843
L1 Data Read Misses D1mrm 2,017
L1 Data Write Misses D1mwm 13,023
L1 Miss Sum L1mm 17,883
L2 Instruction Read Misses ILmrm 719
L2 Data Read Misses DLmrm 322
L2 Data Write Misses DLmwm 12,617
L2 Miss Sum LLmm 13,657
Conditional Branches Bcm 321,742,305
Mispredicted Cond. Branches Bcmm 3,407,404
Indirect Branches Bim 98,326,304
Mispredicted Ind. Branches Bimm 2,541,727
Total Mispredicted Branches Bmm 5,949,131

Sphere::intersect()

Event Short Name Count
Calls Cs 9,555,396
Instruction Fetch Irs 5,744,882,374
Data Read Access Drs 1,530,528,738
Data Write Access Dws 477,776,980
L1 Instruction Fetch Misses I1mrs 6
L1 Data Read Misses D1mrs 1
L1 Data Write Misses D1mws 0
L1 Miss Sum L1ms 7
L2 Instruction Read Misses ILmrs 6
L2 Data Read Misses DLmrs 0
L2 Data Write Misses DLmws 0
L2 Miss Sum LLms 6
Conditional Branches Bcs 97,279,766
Mispredicted Cond. Branches Bcms 925,966
Indirect Branches Bis 0
Mispredicted Ind. Branches Bims 0
Total Mispredicted Branches Bms 925,966

a) What is the overall branch misprediction rate?

b) What is the misprediction rate within the Sphere::intersect() function?

c) What is the overall L1 miss rate? The overall L2 miss rate?

d) What is the average memory access time (AMAT) in cycles?

e) What is the expected total number of cycles for this program?

f) What is the expected total number of cycles spent in the Sphere::intersect() function?

g) If the clock rate is 2 GHz, what is the total execution time of the program?

h) If we could reduce the total execution time by a billion cycles, what would the overall
speedup be?

i) If we could make Sphere::intersect() 1.5x faster what would the overall speedup be?

j) What would the expected overall speedup be if we could cut the L2 hit time to 10 cycles?

k) What would the expected overall speedup be if we could cut the memory access time to 75
cycles?

l) What would the expected overall speedup be if we could cut the branch miss rate in half?

m) The indirect branches are primarily due to virtual function calls. What would the expected
overall speedup be if we could refactor the code to eliminate them without increasing the
other cycle counts?

n) What would the total execution time be without cache or branch prediction?

Suppose we introduce a new conditional load instruction that can replace a branch followed by a
load with a single new instruction. The new instruction does not branch, so cannot be
mispredicted, however, it will access its data memory argument even if it doesn’t use it, so may
increase the data access rate.

o) If all of the conditional branches in Sphere::intersect() could use this new instruction, what

speedup would you expect in the Sphere::intersect() function? Be sure to account for any
changes in instruction count, data access count, and branch count.

p) If you only use this new instruction in Sphere::intersect(), what is your expected total
speedup?

q) What is the expected total execution time with the new instruction?

