
CMSC611: Advanced Computer Architecture
Extra Credit Homework 1

iAPX 86,88 (Intel Advanced Processor Architecture 8086/8088) is a very famous architecture
dating back to 1980s, and the predecessor to the modern Intel CPU architectures. It is a two
operand machine (source and destination). It supports source/destination operand combinations of
register/memory, memory/register, memory/memory, immediate/register, and immediate/memory.
Consider the following code segment and instruction set reference table for the iAPX 86,88.
Assume the initial value for ARRAY[100] is 128 and for ARRAY[200] is 2048.

 MOV AX, ARRAY[100]
 ADD AX, 128
 MOV CX, 4
 MUL CX
 MOV ARRAY[100], AX
 AGAIN: MOV AX, ARRAY[200]
 SUB AX, 256
 MOV ARRAY[200], AX
 MOV CX, AX
 MOV AX, ARRAY[100]
 SUB CX, AX
 JCXZ AGAIN

Instruction Operands Clock Cycles

MOV destination, source

register, register 2
register, immediate 4
register, memory 12
memory, register 13

ALU destination, source
(for ADD and SUB in this
case)

register, register 3
register, immediate 4
register, memory 13
memory, register 24

memory, immediate 25
MUL source
(destination register is AX) register 118

JCXZ label
(jump to label if CX =0) label 18

1. Compute the weighted average CPI for the code execution.
2. Operands in ALU can access local variables from memory by directly computing the

effective address. We could use this to reduce the number of instructions in the code. For
example, three instructions

 MOV AX, ARRAY[SI]
 ADD AX, 4
 MOV ARRAY[SI], AX
 can be combined into one instruction
 ADD ARRAY[SI], 4
 Show your new code (without changing the original code result) by reducing the number
 of original instructions and compute the new weighted average CPI. Could your new
 code improve the performance of the original one on the execution time?

