
Advanced Computer Architecture CMSC 611

Homework 4

Due in class at 1.05pm, Nov 7
th

, 2012

(For Part B, you could submit an electronic file containing the output of your simulations. If you

wish to go green, then you can submit the entire Homework electronically as well. Make sure

you include the string “CMSC 611 Homework” in your subject line. Deadline remains the same)

Please DO NOT email your homework to Dr. Olano!! DO NOT include him in the CC either!!

There is a strong chance it won’t be graded if you do!! Send it only to <abhay1@umbc.edu>

PART A

1) Branch Prediction! (35 points)

We have a piece of code with three static branch instructions B1, B2 and B3 and a co-

relating branch predictor. The execution of these branches which forms the global history

is as shown in the table below.

Branch

instruction
B1 B2 B1 B2 B1 B2 B3 B1 B2 B1 B2 B3 B1

Direction T N T N T T T T N T T N N

T stands for branch Taken and N stands for branch Not Taken. This table indicates the

sequence of branch instructions and their corresponding directions during the execution (The

actual direction). You can assume that the predictor’s initial state before execution, predicts not

taken (NT) for all branches.

Fill the table below assuming a (2, 2) co-relating predictor uses only the LOCAL history to

predict the direction for branch B1.

(2, 2) Predictor using local history for B1

B1

invocation

number

History

used for

prediction

Prediction

for B1

Actual

Direction

for B1

Predictor State

N, N N, T T, N T, T

1 N, N N T N N N N

2

3

4

5

6

Fill the table below assuming a (2, 1) co-relating predictor uses only the LOCAL history to

predict the direction for branch B1.

(2, 1) Predictor using local history for B1

B1

invocation

number

History

used for

prediction

Prediction

for B1

Actual

Direction

for B1

Predictor State

N, N N, T T, N T, T

1 N, N N T T N N N

2

3

4

5

6

Fill the table below assuming the (2, 2) co-relating predictor uses only the GLOBAL history to

predict the direction for branch B1.

(2, 2) Predictor using global history for B1

B1

invocation

number

History

used for

prediction

Prediction

for B1

Actual

Direction

for B1

Predictor State

N, N N, T T, N T, T

1 N, N N T N N N N

2

3

4

5

6

Fill the table below assuming the (2, 1) co-relating predictor uses only the GLOBAL history to

predict the direction for branch B1.

(2, 1) Predictor using global history for B1

B1

invocation

number

History

used for

prediction

Prediction

for B1

Actual

Direction

for B1

Predictor State

N, N N, T T, N T, T

1 N, N N T T N N N

2

3

4

5

6

2) Given (15 points)

 Cache Size = 256KB

 Block Size = 32 Bytes

 Address size = 32 bits

Calculate the size of the tag, offset and index fields and explain very briefly how you

computed your values, for a

a) Direct mapped cache

b) 8-way associative cache

c) Fully associative cache

PART B – Introduction to SimpleScalar Simulator

Simplescalar is a suite of programs that simulate the execution of programs compiled using a

MIPS-like instruction set called PISA. You can simulate the execution of any program using

Simplescalar by simply re-compiling the program using a version of gcc that knows how to

generate PISA instructions as well as x86 instructions.

Please refer http://www.simplescalar.com/ to get a brief introduction. The simulator has the

following modules (taken from the tutorial slides)

• sim-safe.c - minimal functional simulator

• sim-fast.c - faster (and twisted) version of sim-safe

• sim-eio.c - EIO trace and checkpoint generator

• sim-profile.c - profiling simulator

• sim-cache.c - two-level cache simulator (no timing)

• sim-cheetah.c - Cheetah single-pass multiple configuration cache simulator

• sim-bpred.c - branch predictor simulator (no timing)

• sim-outorder.c - detailed OoO issue performance simulator (with timing)

Running any exe without any arguments will document the list of arguments it can take. The

SimpleScalar simulator is located at ~olano/simplesim-3.0/

To start off, log into <linux.gl.umbc.edu> machine using your account information. You can

navigate to the above directory by typing

cd ~olano/simplesim-3.0/

and type in

./sim-foo where foo can be safe, fast, cache etc.

This will show the arguments they take. (I have pasted the output of running sim-safe without

any arguments

linux3[270]% ~olano/simplesim-3.0/sim-safe

sim-safe: SimpleScalar/PISA Tool Set version 3.0 of August, 2003.

Copyright (c) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.

All Rights Reserved. This version of SimpleScalar is licensed for academic

non-commercial use. No portion of this work may be used by any commercial

entity, or for any commercial purpose, without the prior written permission

of SimpleScalar, LLC (info@simplescalar.com).

Usage: /afs/umbc.edu/users/o/l/olano/home/simplesim-3.0/sim-safe {-options}

executable {arguments}

sim-safe: This simulator implements a functional simulator. This

functional simulator is the simplest, most user-friendly simulator in the

http://www.simplescalar.com/

simplescalar tool set. Unlike sim-fast, this functional simulator checks

for all instruction errors, and the implementation is crafted for clarity

rather than speed.

-option <args> # <default> # description

-config <string> # <null> # load configuration from a

file

-dumpconfig <string> # <null> # dump configuration to a

file

-h <true|false> # false # print help message

-v <true|false> # false # verbose operation

-d <true|false> # false # enable debug message

-i <true|false> # false # start in Dlite debugger

-seed <int> # 1 # random number generator

seed (0 for timer seed)

-q <true|false> # false # initialize and terminate

immediately

-chkpt <string> # <null> # restore EIO trace

execution from <fname>

-redir:sim <string> # <null> # redirect simulator output

to file (non-interactive only)

-redir:prog <string> # <null> # redirect simulated program

output to file

-nice <int> # 0 # simulator scheduling

priority

-max:inst <uint> # 0 # maximum number of inst's

to execute

1) Simulating a test program. (10 points)

There are a few benchmarks available and for our purposes we will use a test program

called test-math located at

~olano/simplesim-3.0/tests-pisa/bin.little/

This is the little endian PISA binary.

Run this benchmark and answer the following questions.

a) Total Number of instructions executed

b) Total number of loads and stores executed

c) Program text (code) size in bytes

d) Total first level page table misses

e) Total page table accesses

(If you wish to redirect the output, you can use redir flags as shown below

So a command would look like

sim-foo –redir:sim simOutputFilePath –redir:prog

progOutputFilepath benchmarkProgramPath

2) Branch Prediction can be simulated using sim-bpred. (40 points)

Run the program without arguments. Read and understand the arguments they take.

a) (20 points)

Now run the simulator with the test-math benchmark using the 4 branch

predictors learnt in class namely, taken, not taken, bi modal FSM and the 2 level

predictor. The 2-level predictor can further take arguments about the size of

history it maintains.

o Using the values the simulator dumps out as evidence, explain how each

predictor performed and compare them.

o Vary the different parameters the 2-level predictor takes and comment on

how this affected the performance of the predictor.

b) (20 points)

Now repeat what you did for the above problem with a different benchmark
anagram.

This benchmark program finds all the anagrams of a given input file. For this

problem both the dictionary and the input file is provided. A sim-safe simulation

command is shown below

cd ~olano/simplesim-3.0
./sim-safe tests-pisa/bin.little/anagram tests-pisa/inputs/words < tests-
pisa/inputs/input.txt

Here the file tests-pisa/inputs/words is the dictionary and the input file is the latter.

NO ESSAY TYPE ANSWERS PLEASE!!

Be specific about the statistic you are using and what you infer from it. Generic and

vague answers will not fetch you full points.

