
Advanced Computer Architecture CMSC 611

Extra Credit HW1

Due in class at 1.05pm, Nov 14
th
, 2012

(If you wish to go green, then you can submit the entire Homework electronically. Make sure

you include the string “CMSC 611 Homework” in your subject line. Deadline remains the same)

Please DO NOT email your homework to Dr. Olano!! DO NOT include him in the CC either!!

There is a strong chance it won’t be graded if you do!! Send it only to <abhay1@umbc.edu>

 (The values might not resemble realistic values; it is for the sake of understanding)

1) Parallelization decreases the execution time of a program significantly. Assume we have a

program, 36% of which is parallelizable.

a) What is the theoretical maximum speedup that can be achieved by only exploiting the

parallelism?

b) Suppose we have a GPU (let’s call this GPU-8) which can exploit the parallelism and is 8

times faster than a normal CPU, what is the speedup achieved by using GPU-8?

c) Now, instead of GPU-8 used in b) assume a new GPU (let's call this GPU-20), which is

20 times faster than the CPU, but harder to effectively parallelize. What fraction of the

original code must be parallelized to match the speedup of GPU-8. (30 points)

2) For some program, 35% of the instructions are floating point instructions and 30% are

memory instructions. You have 2 possible enhancements, A and B. Enhancement A speeds

up the memory instructions by 6 whereas B speeds up the floating point instructions by 10

but also slows down the memory instructions.

Assume you picked B! Now what is the maximum tolerable slowdown of the memory

instructions for you to be able to successfully defend your choice of B as the right one?

 (15 points)

3) So far our RISC specs allows for register to register ALU instructions only. The operand had

to be loaded into the register before the ALU operation. For example,

LD r0, 16(r1)

SUB r3, r2, r0

Now if we supported register-memory addressing mode then we could effectively get rid of

the load instruction and combine them into one instruction

SUB r3, r2, 16(r1)

For a machine supporting this, the cycle time bumps up by about 15% but CPI remains

unaffected. Now assuming that “load” accounts for 35% of the instructions, what minimum

fraction of these must be removed, for our new machine to have at-least the same

performance as the old one. (30 points)

4) (25 points)

Consider the following architectures. Fig. (A) resolves the branch at EX while Fig (B) does it

at ID.

Fig (A)

Fig (B)

Now consider a piece of code, 25% of which are branch instructions and 2 machines, A

and B, which implement architectures from Fig A and Fig B respectively. Machine A

employs a predict-branch-not-taken scheme while Machine B uses one branch delay slot

and manages to fill them 70% of the time with useful computation. Assuming that both

machine A and B have the same cycle time and that about 35% of the branches are taken,

which machine do you think is faster and why?

