
CMSC 611: Advanced
Computer Architecture

Shared Memory

Most slides adapted from David Patterson. Some from Mohomed Younis

Can support either SW model on either HW basis

MIMD
•! Message Passing
•! Shared memory/distributed memory

–! Uniform Memory Access (UMA)
–! Non-Uniform Memory Access (NUMA)

Message passing

•! Processors have private memories,
communicate via messages

•! Advantages:
–!Less hardware, easier to design
–!Focuses attention on costly non-local

operations

Message Passing Model

•! Each PE has local processor, data, (I/O)
–!Explicit I/O to communicate with other PEs
–!Essentially NUMA but integrated at I/O vs.

memory system
•! Free run between Send & Receive

–!Send + Receive = Synchronization between
processes (event model)
•! Send: local buffer, remote receiving process/port
•! Receive: remote sending process/port, local

buffer

History of message passing

•! Early machines
–!Local communication
–!Blocking send & receive

•! Later: DMA with non-blocking sends
–!DMA for receive into buffer until processor

does receive, and then data is transferred to
local memory

•! Later still: SW libraries to allow arbitrary
communication

Shared Memory

•! Processors communicate with shared
address space

•! Easy on small-scale machines
•! Advantages:

–!Model of choice for uniprocessors, small-
scale multiprocessor

–!Ease of programming
–!Lower latency
–!Easier to use hardware controlled caching

•! Difficult to handle node failure

Centralized Shared Memory

•! Processors share a single centralized (UMA) memory through a bus
interconnect

•! Feasible for small processor count to limit memory contention
•! Centralized shared memory architectures are the most common form of

MIMD design

Distributed Memory

•! Uses physically distributed (NUMA) memory to support large
processor counts (to avoid memory contention)

•! Advantages
–! Allows cost-effective way to scale the memory bandwidth
–! Reduces memory latency

•! Disadvantage
–! Increased complexity of communicating data

Shared Address Model

•! Physical locations
–!Each PE can name every physical location

in the machine
•! Shared data

–!Each process can name all data it shares
with other processes

Shared Address Model
•! Data transfer

–! Use load and store, VM maps to local or remote
location

–! Extra memory level: cache remote data
–! Significant research on making the translation

transparent and scalable for many nodes
•! Handling data consistency and protection challenging
•! Latency depends on the underlying hardware architecture

(bus bandwidth, memory access time and support for
address translation)

•! Scalability is limited given that the communication model is
so tightly coupled with process address space

Three Fundamental Issues
•! 1: Naming: how to solve large problem fast

–! what data is shared
–! how it is addressed
–! what operations can access data
–! how processes refer to each other

•! Choice of naming affects code produced by a
compiler
–! Just remember and load address or keep track of

processor number and local virtual address for
message passing

•! Choice of naming affects replication of data
–! In cache memory hierarchy or via SW replication

and consistency

Naming Address Spaces
•! Global physical address space

–! any processor can generate, address and access it
in a single operation

•! Global virtual address space
–! if the address space of each process can be

configured to contain all shared data of the parallel
program
•! memory can be anywhere: virtual address translation

handles it

•! Segmented shared address space
–! locations are named <process number, address>

uniformly for all processes of the parallel program

Three Fundamental Issues

•! 2: Synchronization: To cooperate,
processes must coordinate
–!Message passing is implicit coordination

with transmission or arrival of data
–!Shared address ! additional operations to

explicitly coordinate:
e.g., write a flag, awaken a thread, interrupt
a processor

Three Fundamental Issues
•! 3: Latency and Bandwidth

–! Bandwidth
•! Need high bandwidth in communication
•! Cannot scale, but stay close
•! Match limits in network, memory, and processor
•! Overhead to communicate is a problem in many machines

–! Latency
•! Affects performance, since processor may have to wait
•! Affects ease of programming, since requires more thought

to overlap communication and computation
–! Latency Hiding

•! How can a mechanism help hide latency?
•! Examples: overlap message send with computation, pre-

fetch data, switch to other tasks

Centralized Shared Memory
MIMD

•! Processors share a single centralized memory
through a bus interconnect
–! Memory contention: Feasible for small # processors
–! Caches serve to:

•! Increase bandwidth versus
bus/memory

•! Reduce latency of access
•! Valuable for both private data

and shared data
–! Access to shared data is

optimized by replication
•! Decreases latency
•! Increases memory bandwidth
•! Reduces contention
•! Reduces cache coherence problems

A cache coherence problem arises when the cache
reflects a view of memory which is different from reality

Cache Coherency

•! A memory system is coherent if:
–! P reads X, P writes X, no other processor writes X, P reads X

•! Always returns value written by P
–! P reads X, Q writes X, P reads X

•! Returns value written by Q (provided sufficient W/R separation)
–! P writes X, Q writes X

•! Seen in the same order by all processors

Time Event
Cache

Contents for
CPU A

Cache
Contents for

CPU B

Memory
Contents for

location X
0 1
1 CPU A reads X 1 1
2 CPU B reads X 1 1 1
3 CPU A stores 0 into X 0 1 0

Potential HW Coherency
Solutions

•! Snooping Solution (Snoopy Bus)
–!Send all requests for data to all processors
–!Processors snoop to see if they have a copy

and respond accordingly
–!Requires broadcast, since caching

information is at processors
–!Works well with bus (natural broadcast

medium)
–!Dominates for small scale machines (most

of the market)

Potential HW Coherency
Solutions

•! Directory-Based Schemes
–!Keep track of what is being shared in one

centralized place
–!Distributed memory ⇒ distributed directory

for scalability (avoids bottlenecks)
–!Send point-to-point requests to processors

via network
–!Scales better than Snooping
–!Actually existed before Snooping-based

schemes

Basic Snooping Protocols
•! Write Invalidate Protocol:

–! Write to shared data: an invalidate is sent to all caches which
snoop and invalidate any copies

–! Cache invalidation will force a cache miss when accessing the
modified shared item

–! For multiple writers only one will win the race ensuring
serialization of the write operations

–! Read Miss:
•! Write-through: memory is always up-to-date
•! Write-back: snoop in caches to find most recent copy

Processor activity Bus activity
Contents

of CPU A’s
cache

Contents
of CPU B’s

cache

Contents of
memory

location X
 0

CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes a 1 to X Invalidation for X 1 0
CPU B reads X Cache miss for X 1 1 1

Basic Snooping Protocols
•! Write Broadcast (Update) Protocol (typically write

through):
–! Write to shared data: broadcast on bus, processors snoop,

and update any copies
–! To limit impact on bandwidth, track data sharing to avoid

unnecessary broadcast of written data that is not shared
–! Read miss: memory is always up-to-date
–! Write serialization: bus serializes requests!

Processor activity Bus activity
Contents
of CPU

A’s cache

Contents
of CPU

B’s cache

Contents
of memory
location X

 0
CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes a 1 to X Write broadcast of X 1 1 1
CPU B reads X 1 1 1

Invalidate vs. Update

•! Write-invalidate has emerged as the
winner for the vast majority of designs

•! Qualitative Performance Differences :
–!Spatial locality

•! WI: 1 transaction/cache block;
•! WU: 1 broadcast/word

–!Latency
•! WU: lower write–read latency
•! WI: must reload new value to cache

Invalidate vs. Update

•! Because the bus and memory bandwidth
is usually in demand, write-invalidate
protocols are very popular

•! Write-update can causes problems for
some memory consistency models,
reducing the potential performance gain
it could bring

•! The high demand for bandwidth in write-
update limits its scalability for large
number of processors

An Example Snoopy Protocol
•! Invalidation protocol, write-back cache
•! Each block of memory is in one state:

–! Clean in all caches and up-to-date in memory
(Shared)

–! OR Dirty in exactly one cache (Exclusive)
–! OR Not in any caches

•! Each cache block is in one state (track these):
–! Shared : block can be read
–! OR Exclusive : cache has only copy, it is write-able,

and dirty
–! OR Invalid : block contains no data

•! Read misses: cause all caches to snoop bus
•! Writes to clean line are treated as misses

Snoopy-Cache Controller
•! Complications

–! Cannot update cache until
bus is obtained

–! Two step process:
•! Arbitrate for bus
•! Place miss on bus and

complete operation
–! Split transaction bus:

•! Bus transaction is not
atomic

•! Multiple misses can
interleave, allowing two
caches to grab block in
the Exclusive state

•! Must track and prevent
multiple misses for one
block

Assumes memory
blocks A1 and A2 map
to same cache block,
initial cache state is
invalid

Example

Assumes memory
blocks A1 and A2 map
to same cache block

Example

Assumes memory
blocks A1 and A2 map
to same cache block

Example

Example

Assumes memory
blocks A1 and A2 map
to same cache block

Example

Assumes memory
blocks A1 and A2 map
to same cache block

Example

A1

A1

Assumes memory
blocks A1 and A2 map
to same cache block

Distributed Directory
Multiprocessors

•! Directory per cache that tracks state of every
block in every cache
–! Which caches have a block, dirty vs. clean, ...
–! Info per memory block vs. per cache block?

+! In memory => simpler protocol (centralized/one location)
–! In memory => directory is f(memory size) vs. f(cache size)

•! To prevent directory from being a bottleneck
–! distribute directory entries with memory
–! each tracks of

which processor
has their blocks

Directory Protocol
•! Similar to Snoopy Protocol: Three states

–! Shared: Multiple processors have the block cached
and the contents of the block in memory (as well as
all caches) is up-to-date

–! Uncached No processor has a copy of the block
(not valid in any cache)

–! Exclusive: Only one processor (owner) has the
block cached and the contents of the block in
memory is out-to-date (the block is dirty)

•! In addition to cache state, must track which
processors have data when in the shared state
–! usually bit vector, 1 if processor has copy

Directory Protocol
•! Keep it simple(r):

–! Writes to non-exclusive data => write miss
–! Processor blocks until access completes
–! Assume messages received and acted upon in

order sent
•! Terms: typically 3 processors involved

–! Local node where a request originates
–! Home node where the memory location of an

address resides
–! Remote node has a copy of a cache block, whether

exclusive or shared
•! No bus and do not want to broadcast:

–! interconnect no longer single arbitration point
–! all messages have explicit responses

Example Directory Protocol

•! Message sent to directory causes two
actions:
–!Update the directory
–!More messages to satisfy request

•! We assume operations atomic, but they
are not; reality is much harder; must
avoid deadlock when run out of buffers
in network

Type SRC DEST MSG
Read miss local cache home directory P,A

P has read miss at A; request data and make P a read sharer
Write miss local cache home directory P,A

P has write miss at A; request data and make P exclusive owner
Invalidate home directory remote cache A

Invalidate shared data at A
Fetch home directory remote cache A

Fetch block A home; change A remote state to shared
Fetch/invalidate home directory remote cache A

Fetch block A home; invalidate remote copy
Data value reply home directory local cache D

Return data value from home memory
Data write back remote cache home directory A,D

Write back data value for A

Directory Protocol Messages

State machine for CPU
requests for each
memory block

Cache Controller State
Machine

•! States identical to
snoopy case
–! Transactions very

similar.
•! Miss messages to

home directory
•! Explicit invalidate &

data fetch requests

State machine
for Directory requests
for each
memory block

Directory Controller State
Machine

•! Same states and
structure as the
transition diagram for an
individual cache
–! Actions:

•! update of directory state
•! send messages to satisfy

requests
–! Tracks all copies of each

memory block
•! Sharers set

implementation can use a
bit vector of a size of #
processors for each block

Example

P2: Write 20 to A1

Assumes memory
blocks A1 and A2 map
to same cache block

P2: Write 20 to A1

WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

Assumes memory
blocks A1 and A2 map
to same cache block

Example

P2: Write 20 to A1

WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0
Excl. A1 10

Assumes memory
blocks A1 and A2 map
to same cache block

Example

P2: Write 20 to A1

WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0
Excl. A1 10

Shar. A1 RdMs P2 A1
Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10
A1

Write Back

Assumes memory
blocks A1 and A2 map
to same cache block

Example

Example

P2: Write 20 to A1

Excl. A1 10 DaRp P1 A1 0
Excl. A1 10

Shar. A1 RdMs P2 A1
Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10
A1

Excl. A1 20 WrMs P2 A1 10
Inv. Inval. P1 A1 A1 Excl. {P2} 10

Assumes memory
blocks A1 and A2 map
to same cache block

Example

P2: Write 20 to A1

WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0
Excl. A1 10

Shar. A1 RdMs P2 A1
Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10
A1

Excl. A1 20 WrMs P2 A1 10
Inv. Inval. P1 A1 A1 Excl. {P2} 10

WrBk P2 A1 20 A1 Unca. {} 20
Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

WrMs P2 A2 A2 Excl. {P2} 0

Assumes memory
blocks A1 and A2 map
to same cache block

Interconnection Networks

•! Local area network (LAN)
–! Hundreds of computers
–! A few kilometers
–! Many-to-one (clients-server)

•! Wide area network (WAN)
–! Thousands of computers
–! Thousands of kilometers

•! Massively processor
networks (MPP)
–! Thousands of nodes
–! Short distance (<~25m)
–! Traffic among nodes

ABCs of Networks

•! Rules for communication are called the “protocol”,
message header and data called a "packet"
–! What if more than 2 computers want to communicate?

•! Need computer “address field” (destination) in packet
–! What if packet is garbled in transit?

•! Add “error detection field” in packet (e.g., CRC)
–! What if packet is lost?

•! Time-out, retransmit; ACK & NACK
–! What if multiple processes/machine?

•! Queue per process to provide protection

Sender

Receiver

Sender
Overhead

Transmission time
(size ÷ bandwidth)

Transmission time
(size ÷ bandwidth)

Time of
Flight

Receiver
Overhead

Transport Latency

Total Latency

(processor
busy)

(processor
busy)

Performance Metrics

•! Bandwidth: maximum rate of propagating information
•! Time of flight: time for 1st bit to reach destination
•! Overhead: software & hardware time for encoding/decoding,

interrupt handling, etc.

Total latency = Sender Overhead + Time of flight +
Message size

Bandwidth
+ Receiver overhead

Time of
Flight

Ideal: high bandwidth, low
latency, standard interface

$
CPU

L2 $

Memory
Bus

Memory Bus Adaptor

I/O bus

I/O

Controller
I/O

Controller

Network Network

Network Interface Issues
•! Where to connect

network to computer?
–! Cache consistency to

avoid flushes
•! memory bus

–! Low latency and high
bandwidth
•! memory bus

–! Standard interface card?
•! I/O bus

–! Typically, MPP uses
memory bus; while LAN,
WAN connect through I/O
bus

