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Most slides adapted from David Patterson. Some from Mohomed Younis 



Can support either SW model on either HW basis 

MIMD 
•! Message Passing 
•! Shared memory/distributed memory 

–! Uniform Memory Access (UMA) 
–! Non-Uniform Memory Access (NUMA) 



Message passing 

•! Processors have private memories, 
communicate via messages 

•! Advantages: 
–!Less hardware, easier to design 
–!Focuses attention on costly non-local 

operations 



Message Passing Model 

•! Each PE has local processor, data, (I/O) 
–!Explicit I/O to communicate with other PEs 
–!Essentially NUMA but integrated at I/O vs. 

memory system 
•! Free run between Send & Receive 

–!Send + Receive = Synchronization between 
processes (event model) 
•! Send: local buffer, remote receiving process/port 
•! Receive: remote sending process/port, local 

buffer 



History of message passing 

•! Early machines 
–!Local communication 
–!Blocking send & receive 

•! Later: DMA with non-blocking sends 
–!DMA for receive into buffer until processor 

does receive, and then data is transferred to 
local memory 

•! Later still: SW libraries to allow arbitrary 
communication 



Shared Memory 

•! Processors communicate with shared 
address space 

•! Easy on small-scale machines 
•! Advantages: 

–!Model of choice for uniprocessors, small-
scale multiprocessor 

–!Ease of programming 
–!Lower latency 
–!Easier to use hardware controlled caching 

•! Difficult to handle node failure 



Centralized Shared Memory  

•! Processors share a single centralized (UMA) memory through a bus 
interconnect 

•! Feasible for small processor count to limit memory contention 
•! Centralized shared memory architectures are the most common form of 

MIMD design  



Distributed Memory  

•! Uses physically distributed (NUMA) memory to support large 
processor counts (to avoid memory contention) 

•! Advantages 
–! Allows cost-effective way to scale the memory bandwidth  
–! Reduces memory latency 

•! Disadvantage 
–! Increased complexity of communicating data  



Shared Address Model 

•! Physical locations 
–!Each PE can name every physical location 

in the machine 
•! Shared data 

–!Each process can name all data it shares 
with other processes 



Shared Address Model 
•! Data transfer 

–! Use load and store, VM maps to local or remote 
location 

–! Extra memory level: cache remote data 
–! Significant research on making the translation 

transparent and scalable for many nodes 
•! Handling data consistency and protection challenging  
•! Latency depends on the underlying hardware architecture 

(bus bandwidth, memory access time and support for 
address translation)  

•! Scalability is limited given that the communication model is 
so tightly coupled with process address space 



Three Fundamental Issues 
•! 1: Naming: how to solve large problem fast 

–! what data is shared 
–! how it is addressed 
–! what operations can access data 
–! how processes refer to each other 

•! Choice of naming affects code produced by a 
compiler 
–! Just remember and load address or keep track of 

processor number and local virtual address for 
message passing 

•! Choice of naming affects replication of data 
–! In cache memory hierarchy or via SW replication 

and consistency 



Naming Address Spaces 
•! Global physical address space 

–! any processor can generate, address and access it 
in a single operation 

•! Global virtual address space 
–! if the address space of each process can  be 

configured to contain all shared data of the parallel 
program 
•! memory can be anywhere: virtual address translation 

handles it 

•! Segmented shared address space 
–! locations are named <process number, address> 

uniformly for all processes of the parallel program 



Three Fundamental Issues 

•! 2: Synchronization: To cooperate, 
processes must coordinate 
–!Message passing is implicit coordination 

with transmission or arrival of data 
–!Shared address ! additional operations to 

explicitly coordinate:  
e.g., write a flag, awaken a thread, interrupt 
a processor 



Three Fundamental Issues 
•! 3: Latency and Bandwidth 

–! Bandwidth 
•! Need high bandwidth in communication 
•! Cannot scale, but stay close 
•! Match limits in network, memory, and processor 
•! Overhead to communicate is a problem in many machines 

–! Latency 
•! Affects performance, since processor may have to wait 
•! Affects ease of programming, since requires more thought 

to overlap communication and computation 
–! Latency Hiding 

•! How can a mechanism help hide latency? 
•! Examples: overlap message send with computation, pre-

fetch data, switch to other tasks 



Centralized Shared Memory 
MIMD  

•! Processors share a single centralized memory 
through a bus interconnect 
–! Memory contention: Feasible for small # processors 
–! Caches serve to: 

•! Increase bandwidth versus  
bus/memory 

•! Reduce latency of access 
•! Valuable for both private data  

and shared data 
–! Access to shared data is  

optimized by replication 
•! Decreases latency 
•! Increases memory bandwidth 
•! Reduces contention 
•! Reduces cache coherence problems 



A cache coherence problem arises when the cache 
reflects a view of  memory which is different from reality 

Cache Coherency 

•! A memory system is coherent if: 
–! P reads X, P writes X, no other processor writes X, P reads X 

•! Always returns value written by P 
–! P reads X, Q writes X, P reads X 

•! Returns value written by Q (provided sufficient W/R separation) 
–! P writes X, Q writes X 

•! Seen in the same order by all processors 

 

Time Event 
Cache 

Contents for 
CPU A 

Cache 
Contents for 

CPU B 

Memory 
Contents for 

location X 
0    1 
1 CPU A reads X 1  1 
2 CPU B reads X 1 1 1 
3 CPU A stores 0 into X 0 1 0 



Potential HW Coherency 
Solutions 

•! Snooping Solution (Snoopy Bus) 
–!Send all requests for data to all processors 
–!Processors snoop to see if they have a copy 

and respond accordingly  
–!Requires broadcast, since caching 

information is at processors 
–!Works well with bus (natural broadcast 

medium) 
–!Dominates for small scale machines (most 

of the market) 



Potential HW Coherency 
Solutions 

•! Directory-Based Schemes 
–!Keep track of what is being shared in one 

centralized place 
–!Distributed memory ⇒ distributed directory 

for scalability (avoids bottlenecks) 
–!Send point-to-point requests to processors 

via network 
–!Scales better than Snooping 
–!Actually existed before Snooping-based 

schemes 



Basic Snooping Protocols 
•! Write Invalidate Protocol:  

–! Write to shared data:  an invalidate is sent to all caches which 
snoop and invalidate any copies 

–! Cache invalidation will force a cache miss when accessing the 
modified shared item 

–! For multiple writers only one will win the race ensuring 
serialization of the write operations 

–! Read Miss:  
•! Write-through: memory is always up-to-date 
•! Write-back: snoop in caches to find most recent copy 

 

Processor activity Bus activity 
Contents 

of CPU A’s 
cache 

Contents 
of CPU B’s 

cache 

Contents of 
memory 

location X 
    0 

CPU A reads X Cache miss for X 0  0 
CPU B reads X Cache miss for X 0 0 0 
CPU A writes a 1 to X Invalidation for X 1  0 
CPU B reads X Cache miss for X 1 1 1 



Basic Snooping Protocols 
•! Write Broadcast (Update) Protocol (typically write 

through): 
–! Write to shared data: broadcast on bus, processors snoop, 

and update any copies 
–! To limit impact on bandwidth, track data sharing to avoid 

unnecessary broadcast of written data that is not shared 
–! Read miss: memory is always up-to-date 
–! Write serialization: bus serializes requests!  

Processor activity Bus activity 
Contents 
of CPU 

A’s cache 

Contents 
of CPU 

B’s cache 

Contents 
of memory 
location X 

    0 
CPU A reads X Cache miss for X 0  0 
CPU B reads X Cache miss for X 0 0 0 
CPU A writes a 1 to X Write broadcast of X 1 1 1 
CPU B reads X  1 1 1 



Invalidate vs. Update 

•! Write-invalidate has emerged as the 
winner for the vast majority of designs 

•! Qualitative Performance Differences : 
–!Spatial locality 

•! WI: 1 transaction/cache block;  
•! WU: 1 broadcast/word 

–!Latency 
•! WU: lower write–read latency 
•! WI: must reload new value to cache 



Invalidate vs. Update 

•! Because the bus and memory bandwidth 
is usually in demand, write-invalidate 
protocols are very popular 

•! Write-update can causes problems for 
some memory consistency  models, 
reducing the potential performance gain 
it could bring 

•! The high demand for bandwidth in write-
update limits its scalability for large 
number of processors 



An Example Snoopy Protocol 
•! Invalidation protocol, write-back cache 
•! Each block of memory is in one state: 

–! Clean in all caches and up-to-date in memory 
(Shared) 

–! OR Dirty in exactly one cache (Exclusive) 
–! OR Not in any caches 

•! Each cache block is in one state (track these): 
–! Shared : block can be read 
–! OR Exclusive : cache has only copy, it is write-able, 

and dirty 
–! OR Invalid : block contains no data 

•! Read misses: cause all caches to snoop bus 
•! Writes to clean line are treated as misses 



Snoopy-Cache Controller 
•! Complications  

–! Cannot update cache until 
bus is obtained 

–! Two step process: 
•! Arbitrate for bus  
•! Place miss on bus and 

complete operation 
–!  Split transaction bus: 

•! Bus transaction is not 
atomic 

•! Multiple misses can 
interleave, allowing two 
caches to grab block in 
the Exclusive state 

•! Must track and prevent 
multiple misses for one 
block 



Assumes memory 
blocks A1 and A2 map 
to same cache block, 
initial cache state is 
invalid 

Example 



Assumes memory 
blocks A1 and A2 map 
to same cache block 

Example 



Assumes memory 
blocks A1 and A2 map 
to same cache block 

Example 



Example 

Assumes memory 
blocks A1 and A2 map 
to same cache block 



Example 

Assumes memory 
blocks A1 and A2 map 
to same cache block 



Example 

A1 

A1 

Assumes memory 
blocks A1 and A2 map 
to same cache block 



Distributed Directory 
Multiprocessors 

•! Directory per cache that tracks state of every 
block in every cache 
–! Which caches have a block, dirty vs. clean, ... 
–! Info per memory block vs. per cache block? 

+! In memory => simpler protocol (centralized/one location) 
–! In memory => directory is f(memory size) vs. f(cache size) 

•! To prevent directory from being a bottleneck 
–! distribute directory entries with memory 
–! each tracks of  

which processor  
has their blocks 



Directory Protocol 
•! Similar to Snoopy Protocol: Three states 

–! Shared: Multiple processors have the block cached 
and the contents of the block in memory (as well as 
all caches) is up-to-date  

–! Uncached No processor has a copy of the block 
(not valid in any cache) 

–! Exclusive: Only one processor (owner) has the 
block cached and the contents of the block in 
memory is out-to-date (the block is dirty) 

•! In addition to cache state, must track which 
processors have data when in the shared state  
–! usually bit vector, 1 if processor has copy 



Directory Protocol 
•! Keep it simple(r): 

–! Writes to non-exclusive data => write miss 
–! Processor blocks until access completes 
–! Assume messages received and acted upon in 

order sent 
•! Terms: typically 3 processors involved 

–! Local node where a request originates 
–! Home node where the memory location of an 

address resides 
–! Remote node has a copy of a cache block, whether 

exclusive or shared 
•! No bus and do not want to broadcast: 

–! interconnect no longer single arbitration point 
–! all messages have explicit responses 



Example Directory Protocol 

•! Message sent to directory causes two 
actions: 
–!Update the directory 
–!More messages to satisfy request 

•! We assume operations atomic, but they 
are not; reality is much harder; must 
avoid deadlock when run out of buffers 
in network 



Type SRC DEST MSG 
Read miss local cache home directory P,A 

P has read miss at A; request data and make P a read sharer 
Write miss local cache home directory P,A 

P has write miss at A; request data and make P exclusive owner 
Invalidate home directory remote cache A 

Invalidate shared data at A 
Fetch home directory remote cache A 

Fetch block A home; change A remote state to shared 
Fetch/invalidate home directory remote cache A 

Fetch block A home; invalidate remote copy 
Data value reply home directory local cache D 

Return data value from home memory 
Data write back remote cache home directory A,D 

Write back data value for A 

Directory Protocol Messages 



State machine for CPU 
requests for each 
memory block 

Cache Controller State 
Machine 

•! States identical to 
snoopy case 
–! Transactions very 

similar. 
•! Miss messages to 

home directory 
•! Explicit invalidate & 

data fetch requests 



State machine 
for Directory requests 
for each  
memory block 

Directory Controller State 
Machine 

•! Same states and 
structure as the 
transition diagram for an 
individual cache 
–! Actions:  

•! update of directory state  
•! send messages to satisfy 

requests  
–! Tracks all copies of each 

memory block  
•! Sharers set 

implementation can use a 
bit vector of a size of # 
processors for each block  



Example 

P2: Write 20 to A1 

Assumes memory 
blocks A1 and A2 map 
to same cache block 



P2: Write 20 to A1 

WrMs P1 A1 A1 Ex {P1} 
Excl. A1 10 DaRp P1 A1 0 

Assumes memory 
blocks A1 and A2 map 
to same cache block 

Example 



P2: Write 20 to A1 

WrMs P1 A1 A1 Ex {P1} 
Excl. A1 10 DaRp P1 A1 0 
Excl. A1 10 

Assumes memory 
blocks A1 and A2 map 
to same cache block 

Example 



P2: Write 20 to A1 

WrMs P1 A1 A1 Ex {P1} 
Excl. A1 10 DaRp P1 A1 0 
Excl. A1 10 

Shar. A1 RdMs P2 A1 
Shar. A1 10 Ftch P1 A1 10 10 

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10 
A1 

Write Back 

Assumes memory 
blocks A1 and A2 map 
to same cache block 

Example 



Example 

P2: Write 20 to A1 

Excl. A1 10 DaRp P1 A1 0 
Excl. A1 10 

Shar. A1 RdMs P2 A1 
Shar. A1 10 Ftch P1 A1 10 10 

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10 
A1 

Excl. A1 20 WrMs P2 A1 10 
Inv. Inval. P1 A1 A1 Excl. {P2} 10 

Assumes memory 
blocks A1 and A2 map 
to same cache block 



Example 

P2: Write 20 to A1 

WrMs P1 A1 A1 Ex {P1} 
Excl. A1 10 DaRp P1 A1 0 
Excl. A1 10 

Shar. A1 RdMs P2 A1 
Shar. A1 10 Ftch P1 A1 10 10 

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10 
A1 

Excl. A1 20 WrMs P2 A1 10 
Inv. Inval. P1 A1 A1 Excl. {P2} 10 

WrBk P2 A1 20 A1 Unca. {} 20 
Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0 

WrMs P2 A2 A2 Excl. {P2} 0 

Assumes memory 
blocks A1 and A2 map 
to same cache block 



Interconnection Networks 

•! Local area network (LAN) 
–! Hundreds of computers 
–! A few kilometers 
–! Many-to-one (clients-server) 

•! Wide area network (WAN) 
–! Thousands of computers 
–! Thousands of kilometers 

•! Massively processor 
networks (MPP) 
–! Thousands of nodes 
–! Short distance (<~25m) 
–! Traffic among nodes 



ABCs of Networks 

•! Rules for communication are called the “protocol”, 
message header and data called a "packet" 
–! What if more than 2 computers want to communicate? 

•! Need computer “address field” (destination) in packet 
–! What if packet is garbled in transit? 

•! Add “error detection field” in packet (e.g., CRC) 
–! What if packet is lost? 

•! Time-out, retransmit; ACK & NACK 
–! What if multiple processes/machine? 

•! Queue per process to provide protection 



Sender 

Receiver 

Sender 
Overhead 

Transmission time 
(size ÷ bandwidth) 

Transmission time 
(size ÷ bandwidth) 

Time of 
Flight 

Receiver 
Overhead 

Transport Latency 

Total Latency 

(processor 
busy) 

(processor 
busy) 

Performance Metrics 

•! Bandwidth: maximum rate of propagating information 
•! Time of flight: time for 1st bit to reach destination 
•! Overhead: software & hardware time for encoding/decoding, 

interrupt handling, etc. 

  

 

Total latency = Sender Overhead + Time of flight +
Message size

Bandwidth
+ Receiver overhead

Time of 
Flight 



Ideal: high bandwidth, low 
latency, standard interface 

$ 
CPU 

L2 $ 

Memory  
Bus 

Memory Bus Adaptor 

I/O bus 

I/O 

Controller 
I/O 

Controller 

Network Network 

Network Interface Issues 
•! Where to connect 

network to computer? 
–! Cache consistency to 

avoid flushes  
•! memory bus 

–! Low latency and high 
bandwidth  
•! memory bus 

–! Standard interface card? 
•! I/O bus 

–! Typically, MPP uses 
memory bus; while LAN, 
WAN connect through I/O 
bus 


