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•! Performance of Main Memory:  
–! Latency: affects cache miss penalty 

•! Access Time: time between request and word arrives 
•! Cycle Time: time between requests 

–! Bandwidth: primary concern for I/O & large block  
•! Main Memory is DRAM: Dynamic RAM 

–! Dynamic since needs to be refreshed periodically 
–! Addresses divided into 2 halves (Row/Column)   

•! Cache uses SRAM: Static RAM 
–! No refresh 

•! 6 transistors/bit vs. 1 transistor/bit, 10X area 
–!  Address not divided: Full address 



4 Mbit DRAM:  
square root of bits 
per RAS/CAS 

•! Refreshing prevent access to the DRAM (typically 
1-5% of the time) 

•! Reading one byte refreshes the entire row 
•! Read is destructive and thus data need to be re-

written after reading 
–!  Cycle time is significantly larger than access time 
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CPU-DRAM Gap“Moore’s Law” 

Problem:  
Improvements in access time are not enough to catch up 

Solution:  
Increase the bandwidth of main memory (improve throughput) 
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c. Interleaved memory organization

•!  Simple: CPU, Cache, Bus, Memory same width (32 bits) 

•!  Wide:  CPU/Mux 1 word; Mux/Cache, Bus, Memory N words 

•!  Interleaved: CPU, Cache, Bus 1 word: Memory N Modules 
                    (4 Modules); example is word interleaved 

Memory organization would have significant effect on bandwidth 
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•! Access Pattern without Interleaving: 

•! Access Pattern with 4-way Interleaving: 



    Cache          Virtual memory 

Block   !  Page 

Cache miss  !  page fault 
Block   !  Address  
addressing   translation 

•! Using virtual addressing, 
main memory plays the 
role of cache for disks  

•! The virtual space is 
much larger than the 
physical memory space 

•! Physical main memory 
contains only the active 
portion of the virtual 
space  

•! Address space can be 
divided into fixed size 
(pages) or variable size 
(segments) blocks  

Physical addresses

Disk addresses

Virtual addresses
Address translation



    Cache          Virtual memory 

Block   !  Page 

Cache miss  !  page fault 
Block   !  Address  
addressing   translation 

•! Advantages 
–! Allows efficient and safe 

data sharing of memory 
among multiple programs 

–! Moves programming 
burdens of a small, limited 
amount of main memory 

–! Simplifies program 
loading and avoid the 
need for contiguous 
memory block 

–! allows programs to be 
loaded at any physical 
memory location 

Physical addresses

Disk addresses

Virtual addresses
Address translation



•! Page faults are costly and take millions of cycles to 
process (disks are slow) 

•! Optimization Strategies:  
–! Pages should be large enough to amortize the access time 
–! Fully associative placement of pages reduces page fault rate 
–! Software-based so can use clever page placement 
–! Write-through can make writing very time consuming (use 

copy back) 
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Page offsetVirtual page number
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Page offsetPhysical page number
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Translation



Hardware supported 

•! Page table: 
–! Resides in main 

memory 
–! One entry per virtual 

page 
–! No tag is requires since 

it covers all virtual 
pages 

–! Point directly to 
physical page 

–! Table can be very large 
–! Operating sys. may 

maintain one page 
table per process 

–! A dirty bit is used to 
track modified pages 
for copy back 

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not
present in memory

Page table register

Page table

20 12

18
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29 28 27 15 14 13 12 11 10 9 8 3 2 1 0



•! A page fault happens when the valid bit of a virtual page is off 
•! A page fault generates an exception to be handled by the 

operating system to bring the page to main memory from a disk 
•! The operating system creates space for all pages on disk and 

keeps track of the location of pages in main memory and disk 
•! Page location on disk can be stored in page table or in an 

auxiliary structure 
•! LRU page replacement  

strategy is the most common 
•! Simplest LRU implementation  

uses a reference bit per page  
and periodically reset  
reference bits 

Physical memory

Disk storage
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1
1
1
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1
1
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Page table

Virtual page
number
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disk address



MB 4
entry table page

bytes 2  entries table page 2  table page of Size 220 =!=

With a 32-bit virtual address, 4-KB pages, and 4 bytes per page table entry: 
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2

2
2entries table page of Number ==

•! Optimization techniques: 
–! Keep bound registers to limit the size of page table for given 

process in order to avoid empty slots 
–! Store only physical pages and apply hashing function of the 

virtual address (inverted page table) 
–! Use multi-level page table to limit size of the table residing in 

main memory 
–! Allow paging of the page table 
–! Cache the most used pages ! Translation Look-aside Buffer 



32-bit address: 

P1 index P2 index page offest 

10 10 12 

4 bytes 

4 bytes 

4KB 
1K 
PTEs 

° 2 GB virtual address space 
° 4 MB of PTE2 

 – paged, holes 
° 4 KB of PTE1 

Inverted page table can be the only 
practical solution for huge address 
space, e.g 64-bit address space 
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addressValid
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Tag
Virtual page
number

Physical page
or disk address

Physical memory

Disk storage

•! Special cache for 
recently used 
translation 

•! TLB misses are 
typically handled as 
exceptions by 
operating system 

•! Simple replacement 
strategy since TLB 
misses happen 
frequently 



•! Send virtual address to cache?  
–! Called Virtually Addressed Cache or just Virtual 

Cache vs. Physical Cache 
–! Every time process is switched logically must flush 

the cache; otherwise get false hits 
•! Cost is time to flush + “compulsory” misses from empty 

cache 

–! Dealing with aliases (sometimes called synonyms) 
•! Two different virtual addresses map  to same physical 

address causing unnecessary read misses or even RAW 

–! I/O must interact with cache, so need virtual 
address 



•! Solution to aliases 
–!HW guarantees that every cache block has 

unique physical address (simply check all 
cache entries) 

–!SW guarantee: lower n bits must have same 
address so that it overlaps with index; as 
long as covers index field & direct mapped, 
they must be unique; called page coloring 

•! Solution to cache flush 
–!Add process identifier tag that identifies 

process as well as address within process: 
cannot get a hit if wrong process 



•! Miss rate vs. virtually 
addressed cache 
size of a program 
measured three 
ways: 
–! Without process 

switches 
(uniprocessor) 

–! With process 
switches using a PID 
tag (PID) 

–! With process 
switches but without 
PID (purge) 
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•! If index is physical part of address, can start tag 
access in parallel with translation 

•! To get the best of the physical and virtual caches, use 
the page offset (not affected by the address 
translation) to index the cache 

•! The drawback is that direct-mapped caches cannot be 
bigger than the page size (typically 4-KB) 

•! To support bigger caches and use same technique: 
–! Use higher associativity since the tag size gets smaller 
–! OS implements page coloring since it will fix a few least 

significant bits in the address (move part of the index to the 
tag) 



Valid Tag Data

Page offset

Page offset

Virtual page number

Virtual address

Physical page numberValid

1220

20

16 14

Cache index

32

Cache

DataCache hit

2

Byte
offset

Dirty Tag

TLB hit

Physical page number

Physical address tag

TLB

Physical address
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Fully associative TLB 

Direct-mapped Cache 

Address translation and 
block identification 



Yes

Deliver data
to the CPU

Write?

Try to read data
from cache

Write data into cache,
update the tag, and put
the data and the address
into the write buffer

Cache hit?Cache miss stall

TLB hit?

TLB access

Virtual address

TLB miss
exception

No

YesNo

YesNo

Write access
bit on?

YesNo

Write protection
exception

Physical address

A cache hit can only occur after TLB hit 
(TLB miss & No Page fault ! load page address to TLB) 



Cache TLB Page
fault Possible? If so, under what condition

miss hit hit Possible, although the page table is never really checked if TLB hits

hit miss hit TLB misses, but entry found in page table and data found in cache

miss miss hit TLB misses, but entry found in page table and data misses in cache

miss miss miss TLB misses and followed by page fault. Data must miss in cache

miss hit miss Impossible: cannot have a translation in TLB if page is not in memory

hit hit miss Impossible: cannot have a translation in TLB if page is not in memory

hit miss miss Impossible: data is not allowed in cache if page is not in memory

Possible exceptions: 

Cache miss: referenced block not in cache and needs to be fetched from main memory 

TLB miss: referenced page of virtual address needs to be checked in the page table 

Page fault: referenced page is not in main memory and needs to be copied from disk  



•! Want to prevent a process from 
corrupting memory space of other 
processes 
–!Privileged and non-privileged execution 

•! Implementation can map independent 
virtual pages to separate physical pages 

•! Write protection bits in the page table for 
authentication  

•! Sharing pages through mapping virtual 
pages of different processes to same 
physical pages 



•! To enable the operating system to 
implement protection, the hardware must 
provide at least the following capabilities: 
–!Support at least two mode of operations, 

one of them is a user mode 
–!Provide a portion of CPU state that a user 

process can read but not write,  
•! e.g. page pointer and TLB 

–!Enable change of operation modes through 
special instructions 


