
Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides
Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

CPU Registers
100s Bytes
<10s ns

Cache
K-M Bytes
10-40 ns

Main Memory
G Bytes
70ns-1us

Disk
G-T Bytes
ms

Capacity
Access Time

Tape
infinite
sec-min

Registers

Cache

Main Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Transfer Unit

Prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

•! Performance of Main Memory:
–! Latency: affects cache miss penalty

•! Access Time: time between request and word arrives
•! Cycle Time: time between requests

–! Bandwidth: primary concern for I/O & large block
•! Main Memory is DRAM: Dynamic RAM

–! Dynamic since needs to be refreshed periodically
–! Addresses divided into 2 halves (Row/Column)

•! Cache uses SRAM: Static RAM
–! No refresh

•! 6 transistors/bit vs. 1 transistor/bit, 10X area
–! Address not divided: Full address

4 Mbit DRAM:
square root of bits
per RAS/CAS

•! Refreshing prevent access to the DRAM (typically
1-5% of the time)

•! Reading one byte refreshes the entire row
•! Read is destructive and thus data need to be re-

written after reading
–! Cycle time is significantly larger than access time

!Proc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs) 1

10

100

1000
19

80

19
81

19
83

19

84

19
85

19

86

19
87

19

88

19
89

19

90

19
91

19

92

19
93

19

94

19
95

19

96

19
97

19

98

19
99

20

00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

CPU-DRAM Gap“Moore’s Law”

Problem:
Improvements in access time are not enough to catch up

Solution:
Increase the bandwidth of main memory (improve throughput)

CPU

Cache

Bus

Memory

a. One-word-wide
memory organization

CPU

Bus

b. Wide memory organization

Memory

Multiplexor

Cache

CPU

Cache

Bus

Memory
bank 1

Memory
bank 2

Memory
bank 3

Memory
bank 0

c. Interleaved memory organization

•! Simple: CPU, Cache, Bus, Memory same width (32 bits)

•! Wide: CPU/Mux 1 word; Mux/Cache, Bus, Memory N words

•! Interleaved: CPU, Cache, Bus 1 word: Memory N Modules
 (4 Modules); example is word interleaved

Memory organization would have significant effect on bandwidth

Start Access for D1

CPU Memory

Start Access for D2
D1 available

A
cc

es
s

B
an

k
0

We can Access Bank 0 again

CPU

Memory
Bank 1

Memory
Bank 0

Memory
Bank 3

Memory
Bank 2

A
cc

es
s

B
an

k
1

A
cc

es
s

B
an

k
2

A
cc

es
s

B
an

k
3

•! Access Pattern without Interleaving:

•! Access Pattern with 4-way Interleaving:

 Cache Virtual memory

Block ! Page

Cache miss ! page fault
Block ! Address
addressing translation

•! Using virtual addressing,
main memory plays the
role of cache for disks

•! The virtual space is
much larger than the
physical memory space

•! Physical main memory
contains only the active
portion of the virtual
space

•! Address space can be
divided into fixed size
(pages) or variable size
(segments) blocks

Physical addresses

Disk addresses

Virtual addresses
Address translation

 Cache Virtual memory

Block ! Page

Cache miss ! page fault
Block ! Address
addressing translation

•! Advantages
–! Allows efficient and safe

data sharing of memory
among multiple programs

–! Moves programming
burdens of a small, limited
amount of main memory

–! Simplifies program
loading and avoid the
need for contiguous
memory block

–! allows programs to be
loaded at any physical
memory location

Physical addresses

Disk addresses

Virtual addresses
Address translation

•! Page faults are costly and take millions of cycles to
process (disks are slow)

•! Optimization Strategies:
–! Pages should be large enough to amortize the access time
–! Fully associative placement of pages reduces page fault rate
–! Software-based so can use clever page placement
–! Write-through can make writing very time consuming (use

copy back)

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation

Hardware supported

•! Page table:
–! Resides in main

memory
–! One entry per virtual

page
–! No tag is requires since

it covers all virtual
pages

–! Point directly to
physical page

–! Table can be very large
–! Operating sys. may

maintain one page
table per process

–! A dirty bit is used to
track modified pages
for copy back

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not
present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

•! A page fault happens when the valid bit of a virtual page is off
•! A page fault generates an exception to be handled by the

operating system to bring the page to main memory from a disk
•! The operating system creates space for all pages on disk and

keeps track of the location of pages in main memory and disk
•! Page location on disk can be stored in page table or in an

auxiliary structure
•! LRU page replacement

strategy is the most common
•! Simplest LRU implementation

uses a reference bit per page
and periodically reset
reference bits

Physical memory

Disk storage

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Virtual page
number

Physical page or
disk address

MB 4
entry table page

bytes 2 entries table page 2 table page of Size 220 =!=

With a 32-bit virtual address, 4-KB pages, and 4 bytes per page table entry:
20

12

32
2

2
2entries table page of Number ==

•! Optimization techniques:
–! Keep bound registers to limit the size of page table for given

process in order to avoid empty slots
–! Store only physical pages and apply hashing function of the

virtual address (inverted page table)
–! Use multi-level page table to limit size of the table residing in

main memory
–! Allow paging of the page table
–! Cache the most used pages ! Translation Look-aside Buffer

32-bit address:

P1 index P2 index page offest

10 10 12

4 bytes

4 bytes

4KB
1K
PTEs

° 2 GB virtual address space
° 4 MB of PTE2

 – paged, holes
° 4 KB of PTE1

Inverted page table can be the only
practical solution for huge address
space, e.g 64-bit address space

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Physical page
addressValid

TLB

1
1
1
1
0
1

Tag
Virtual page
number

Physical page
or disk address

Physical memory

Disk storage

•! Special cache for
recently used
translation

•! TLB misses are
typically handled as
exceptions by
operating system

•! Simple replacement
strategy since TLB
misses happen
frequently

•! Send virtual address to cache?
–! Called Virtually Addressed Cache or just Virtual

Cache vs. Physical Cache
–! Every time process is switched logically must flush

the cache; otherwise get false hits
•! Cost is time to flush + “compulsory” misses from empty

cache

–! Dealing with aliases (sometimes called synonyms)
•! Two different virtual addresses map to same physical

address causing unnecessary read misses or even RAW

–! I/O must interact with cache, so need virtual
address

•! Solution to aliases
–!HW guarantees that every cache block has

unique physical address (simply check all
cache entries)

–!SW guarantee: lower n bits must have same
address so that it overlaps with index; as
long as covers index field & direct mapped,
they must be unique; called page coloring

•! Solution to cache flush
–!Add process identifier tag that identifies

process as well as address within process:
cannot get a hit if wrong process

•! Miss rate vs. virtually
addressed cache
size of a program
measured three
ways:
–! Without process

switches
(uniprocessor)

–! With process
switches using a PID
tag (PID)

–! With process
switches but without
PID (purge)

CPU

TB

$

MEM

VA

PA

PA

Conventional
Organization

CPU

$

TB

MEM

VA

VA

PA

Virtually Addressed Cache
Translate only on miss

Synonym Problem

CPU

$ TB

MEM

VA

VA
Tags

PA

Overlap $ access
with VA translation:
requires $ index to
remain invariant

across translation

VA
Tags

L2 $

VA: Virtual address TB: Translation buffer PA: Page address

•! If index is physical part of address, can start tag
access in parallel with translation

•! To get the best of the physical and virtual caches, use
the page offset (not affected by the address
translation) to index the cache

•! The drawback is that direct-mapped caches cannot be
bigger than the page size (typically 4-KB)

•! To support bigger caches and use same technique:
–! Use higher associativity since the tag size gets smaller
–! OS implements page coloring since it will fix a few least

significant bits in the address (move part of the index to the
tag)

Valid Tag Data

Page offset

Page offset

Virtual page number

Virtual address

Physical page numberValid

1220

20

16 14

Cache index

32

Cache

DataCache hit

2

Byte
offset

Dirty Tag

TLB hit

Physical page number

Physical address tag

TLB

Physical address

31 30 29 15 14 13 12 11 10 9 8 3 2 1 0

Fully associative TLB

Direct-mapped Cache

Address translation and
block identification

Yes

Deliver data
to the CPU

Write?

Try to read data
from cache

Write data into cache,
update the tag, and put
the data and the address
into the write buffer

Cache hit?Cache miss stall

TLB hit?

TLB access

Virtual address

TLB miss
exception

No

YesNo

YesNo

Write access
bit on?

YesNo

Write protection
exception

Physical address

A cache hit can only occur after TLB hit
(TLB miss & No Page fault ! load page address to TLB)

Cache TLB Page
fault Possible? If so, under what condition

miss hit hit Possible, although the page table is never really checked if TLB hits

hit miss hit TLB misses, but entry found in page table and data found in cache

miss miss hit TLB misses, but entry found in page table and data misses in cache

miss miss miss TLB misses and followed by page fault. Data must miss in cache

miss hit miss Impossible: cannot have a translation in TLB if page is not in memory

hit hit miss Impossible: cannot have a translation in TLB if page is not in memory

hit miss miss Impossible: data is not allowed in cache if page is not in memory

Possible exceptions:

Cache miss: referenced block not in cache and needs to be fetched from main memory

TLB miss: referenced page of virtual address needs to be checked in the page table

Page fault: referenced page is not in main memory and needs to be copied from disk

•! Want to prevent a process from
corrupting memory space of other
processes
–!Privileged and non-privileged execution

•! Implementation can map independent
virtual pages to separate physical pages

•! Write protection bits in the page table for
authentication

•! Sharing pages through mapping virtual
pages of different processes to same
physical pages

•! To enable the operating system to
implement protection, the hardware must
provide at least the following capabilities:
–!Support at least two mode of operations,

one of them is a user mode
–!Provide a portion of CPU state that a user

process can read but not write,
•! e.g. page pointer and TLB

–!Enable change of operation modes through
special instructions

