
Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides
Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hip
C

ache
Fastest Slowest
Smallest Biggest
Highest Lowest

Speed:
Size:

Cost:

Compiler
Hardware

Operating
System

•! Temporal Locality (Locality in Time):
! Keep most recently accessed data items closer to the processor

•! Spatial Locality (Locality in Space):
! Move blocks consists of contiguous words to the faster levels

Slower Level
Memory Faster Level

Memory
To Processor

From Processor
Block X

Block Y

•! Hit: data appears in some block in the faster level (example: Block X)
–! Hit Rate: the fraction of memory access found in the faster level
–! Hit Time: Time to access the faster level which consists of

•! Memory access time + Time to determine hit/miss
•! Miss: data needs to be retrieve from a block in the slower level (Block Y)

–! Miss Rate = 1 - (Hit Rate)
–! Miss Penalty: Time to replace a block in the upper level + Time to

deliver the block the processor
•! Hit Time << Miss Penalty

•! Block identification
–! How is a block found if it is in the upper (faster) level?

•! Tag/Block

•! Block placement
–! Where can a block be placed in the upper (faster) level?

•! Fully Associative, Set Associative, Direct Mapped

•! Block replacement
–! Which block should be replaced on a miss?

•! Random, LRU

•! Write strategy
–! What happens on a write?

•! Write Back or Write Through (with Write Buffer)

a. Before the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

b. After the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

Xn

X2X2

Requesting Xn
generates a miss and
the word Xn will be
brought from main
memory to cache

Issues:
•!How do we know that a data item is in cache?
•! If so, How to find it?

•! Cache: level of hierarchy closest to processor
•! Caches first appeared in research machines in early 1960s
•! Virtually every general-purpose computer produced today

includes cache

00001 00101 01001 01101 10001 10101 11001 11101

Cache

Memory

Cache block address = (Block address) modulo (Number of cache blocks)

Memory words can be
mapped only to one
cache block

 Cache Data Valid Bit

Byte 0 Byte 1 Byte 3

 Cache Tag

Byte 2

•! Worst case is to keep replacing
a block followed by a miss for it:
Ping Pong Effect

•! To reduces misses:
–! make the cache size bigger

–! multiple entries for the same
Cache Index

cache
blocks Tag

Valid bit
Word
size

•! Cache Size depends on:
–! # cache blocks
–! # address bits
–! Word size

•! Example:
–! For n-bit address, 4-byte

word & 1024 cache
blocks:

–! cache size =
1024 [(n-10 -2) + 1 + 32] bit

Address (showing bit positions)

20 10

Byte
offset

Valid Tag DataIndex
0
1
2

1021
1022
1023

Tag

Index

Hit Data

20 32

31 30 13 12 11 2 1 0

Address (showing bit positions)

16 12 Byte
offset

V Tag Data

Hit Data

16 32

4K
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 4 32 1 0

•! Takes advantage of spatial locality to improve performance
•! Cache block address = (Block address) modulo (Number of cache

blocks)
•! Block address = (byte address) / (bytes per block)

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Average
Access

Time

Increased Miss Penalty
& Miss Rate

Block Size Block Size

•! Larger block size take advantage of spatial locality BUT:
–! Larger block size means larger miss penalty:

•! Takes longer time to fill up the block
–! If block size is too big relative to cache size, miss rate will go up

•! Too few cache blocks

•! Average Access Time =
 Hit Time * (1 - Miss Rate) + Miss Penalty * Miss Rate

1
2

Tag

Data

Block # 0 1 2 3 4 5 6 7

Search

Direct mapped

1
2

Tag

Data

Set # 0 1 2 3

Search

Set associative

1
2

Tag

Data

Search

Fully associative

Cache utilization

Hardware Complexity

•! Set number = (Block number) modulo (Number of sets in the cache)

•! Increased flexibility of block placement reduces probability of cache misses

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Index

Mux 0 1 Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

•! N entries for each Cache Index
•! Example: Two-way set associative cache

–! Cache Index selects a “set” from the cache
–! The two tags in the set are compared in parallel
–! Data is selected based on the tag result

Tag size increases with
higher level of associativity

Address

22 8

V TagIndex
0
1
2

253
254
255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0

:

 Cache Data
Byte 0

0 4 31

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1 Byte 31 :

Byte 32 Byte 33 Byte 63 :

 Cache Tag

Byte Select

Ex: 0x01

X

X

X

X

X

•! Forget about the Cache Index
•! Compare the Cache Tags of all cache entries in parallel
•! Example: Block Size = 32 Byte blocks, we need N 27-bit comparators
•! By definition: Conflict Miss = 0 for a fully associative cache

•! Read misses bring blocks from memory
•! Write access requires careful maintenance of

consistency between cache and main memory
•! Two write strategies:

–! Write through: write to both cache and memory
•! Read misses cannot result in writes
•! No allocation of a cache block is needed
•! Always combined with write buffers so that don’t wait for

slow memory
–! Write back: write cache only; write to memory when

cache block is replaced
•! Is block clean or dirty?
•! No writes to slow memory for repeated write accesses
•! Requires allocation of a cache block

Processor
Cache

Write Buffer

DRAM

•! Processor writes data into the cache and the write buffer
•! Memory controller writes contents of the buffer to memory
•! Increased write frequency can cause saturation of write buffer
•! If CPU cycle time too fast and/or too many store instructions in a row:

–! Store buffer will overflow no matter how big you make it
–! The CPU Cycle Time get closer to DRAM Write Cycle Time

•! Write buffer saturation can be handled by installing a second level (L2) cache

Processor
Cache

Write Buffer

DRAM L2
Cache

•! Empirical results indicates less significance of replacement strategy with
 increased cache sizes

•! Straight forward for Direct Mapped since every block has only one
location

•! Set Associative or Fully Associative:
–! Random: pick any block
–! LRU (Least Recently Used)

•! requires tracking block reference
•! for two-way set associative cache, reference bit attached to every block
•! more complex hardware is needed for higher level of cache associativity

2-way 4-way 8-way Associativity

Size LRU Random LRU Random LRU Random

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Read stall cycles = Reads
Program

"Read miss rate " Read miss penalty

CPU time = (CPU execution cycles + Memory stall cycles) "Cycle time

Memory stall cycles = Read stall cycles + Write stall cycles

Write stall cycles =
Writes

Program
" Write miss rate " Write miss penalty

$
%

&

'
(+ Write buffer stalls

For write-through scheme: Hard to control, assume
enough buffer size

•! To enhance cache performance, one can:
–! Reduce the miss rate (e.g. diminishing blocks collisions)
–! Reduce the miss penalty (e.g. adding multi-level caching)
–! Enhance hit access time (e.g. simple and small cache)

Assume an instruction cache miss rate for gcc of 2% and a data cache miss rate of 4%.
If a machine has a CPI of 2 without any memory stalls and the miss penalty is 40 cycles
for all misses, determine how much faster a machine would run with a perfect cache that
never missed. Assume 36% combined frequencies for load and store instructions
Answer:

Assume number of instructions = I

Instruction miss cycles = I " 2% " 40 = 0.8 " I

Data miss cycles = I " 36% " 4% " 40 = 0.56 " I

Total number of memory-stall cycles = 0.8 I + 0.56 I = 1.36 I

The CPI with memory stalls = 2 + 1.36 = 3.36

2
363

cycle ClockI
cycle ClockI

cache perfect withtime CPU
stalls withtime CPU .

==
!!

!!
=

perfect

stall

perfect

stall
CPI
CPI

CPI
CPI

What happens if the CPU gets faster?

•! Compulsory
–! First access to a block not in cache
–! Also called cold start or first reference misses
–! (Misses in even an Infinite Cache)

•! Capacity
–! If the cache cannot contain all needed blocks
–! Due to blocks discarded and re-retrieved
–! (Misses in Fully Associative Cache)

•! Conflict
–! Set associative or direct mapped: too many blocks

in set
–! Also called collision or interference
–! (Misses in N-way Associative Cache)

•! Capacity misses can be damaging to the
performance (excessive main memory
access)

•! Increasing associativity, cache size and
block width can reduces misses

•! Changing cache size affects both
capacity and conflict misses since it
spreads out references to more blocks

•! Some optimization techniques that
reduces miss rate also increases hit
access time

Conflict Based on SPEC92

•! Compulsory misses are small compared to other
categories

•! Capacity misses diminish with increased cache size
•! Increasing associativity limits the placement conflicts

CCaacchhee SSiizzee ((KKBB))

MM
iiss

ss
RR
aa
ttee

pp
ee
rr

TT
yy
pp
ee

00

00..0022

00..0044

00..0066

00..0088

00..11

00..1122

00..1144

11 22 44 88

11
66

33
22

66
44

11
22

88

11--wwaayy

22--wwaayy

44--wwaayy

88--wwaayy

CCaappaacciittyy

CCoommppuullssoorryy

1. Reducing Misses via Larger Block Size

2. Reducing Misses via Higher Associativity

3. Reducing Misses via Victim Cache

4. Reducing Misses via Pseudo-Associativity

5. Reducing Misses by H/W Prefetching Instr. and Data

6. Reducing Misses by S/W Prefetching Data

7. Reducing Misses by Compiler Optimizations

CPUtime = IC ! CPIExecution +
Memory accesses

Instruction
!Miss rate!Miss penalty"

$
% !Clock cycle time

•! Larger block sizes reduces compulsory misses
(principle of spatial locality)

•! Conflict misses increase for larger block sizes since
cache has fewer blocks

•! The miss penalty usually outweighs the decrease of
the miss rate making large block sizes less favored

2:1 Cache Rule:
Miss Rate for direct
mapped cache of size N
= Miss Rate 2-way
 cache size N/2

•! Greater associativity comes at the expense of
larger hit access time

•! Hardware complexity grows for high
associativity and clock cycle increases

CCaacchhee SSiizzee ((KKBB))

MM
iiss

ss
RR
aatt

ee

pp
ee
rr

TT
yy
pp
ee

00

00..0022

00..0044

00..0066

00..0088

00..11

00..1122

00..1144

11 22 44 88

11
66

33
22

66
44

11
22

88

11--wwaayy

22--wwaayy

44--wwaayy

88--wwaayy

CCaappaacciittyy

CCoommppuullssoorryy

Associativity Cache Size
(KB) 1-way 2-way 4-way 8-way

1 7.65 6.60 6.22 5.44
2 5.90 4.90 4.62 4.09
4 4.60 3.95 3.57 3.19
8 3.30 3.00 2.87 2.59

16 2.45 2.20 2.12 2.04
32 2.00 1.80 1.77 1.79
64 1.70 1.60 1.57 1.59

128 1.50 1.45 1.42 1.44

Assume hit time is 1 clock cycle and average miss penalty is 50 clock cycles for
a direct mapped cache. The clock cycle increases by a factor of 1.10 for 2-way,
1.12 for 4-way, 1.14 for 8-way associative cache. Compare the average
memory access based on the previous figure miss rates

High associativity becomes
a negative aspect

A good size of direct mapped cache can
be very efficient given its simplicity

CPU
address
Data Data
in out

Write
buffer

Lower level memory

Victim cache

=?

=?

Data
Tag

•! Combines fast hit time of direct
mapped yet still avoids conflict misses
–! Adds small fully asssociative cache between the direct

mapped cache and memory to place data discarded from
cache

–! Jouppi [1990]: 4-entry victim cache removed 20% to 95% of
conflicts for a 4 KB direct mapped data cache

–! Technique is used in Alpha, HP machines and does not impair
the clock rate

•! Combine fast hit time of Direct Mapped and
lower conflict misses of 2-way set associative

•! Divide cache: on a miss, check other half of
cache to see if there, if so have a pseudo-hit

•! Simplest implementation inverts the index field
MSB to find the other pseudo set

•! To limit the impact of hit time variability on
performance, swap block contents

•! Drawback: CPU pipeline is hard if hit takes 1
or 2 cycles
–! Better for caches not tied directly to processor (L2)
–! Used in MIPS R1000 L2 cache, similar in

UltraSPARC

•! Hardware pre-fetches instructions and data while handing other
cache misses
–! Assume pre-fetched items will be referenced shortly

•! Pre-fetching relies on having extra memory bandwidth that can be
used without penalty

•! Examples of Instruction Pre-fetching:
–! Alpha 21064 fetches 2 blocks on a miss
–! Extra block placed in “stream buffer”
–! On miss check stream buffer

•! Works with data blocks too:
–! Jouppi [1990] 1 data stream buffer got 25% misses from 4KB

cache; 4 streams got 43%
–! Palacharla & Kessler [1994] for scientific programs for 8

streams got 50% to 70% of misses from 2 64KB, 4-way set
associative caches

Average memory access time = Hit time + Miss Rate"
(Prefetch hit rate + (1#Prefetch hit rate)"Miss penalty)

for (i = 0; i < 3; i = i+1)
 for (j = 0; j < 100; j = j+1)
 a[i][j] = b[j][0] * b[j+1][0];

for (j = 0; j < 100; j = j+1)
 pre-fetch (b[i+7][0]);
 a[0][j] = b[j][0] * b[j+1][0];
 for (i = 1; i < 3; i = i+1)
 pre-fetch (a[i][j+7]);
 a[i-1][j] = b[j][0] * b[j+1][0];

•! Uses special instructions to pre-fetch data:
–! Load data into register (HP PA-RISC loads)
–! Cache Pre-fetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)

•! Special pre-fetching instructions cannot cause faults (undesired exceptions) since
it is a form of speculative execution

•! Makes sense if the processor can proceeds without blocking for a cache access
(lock-free cache)

•! Loops are typical target for pre-fetching after unrolling (miss penalty is small) or
after applying software pipelining (miss penalty is large)

•! Issuing Pre-fetch Instructions takes time
–! Is cost of pre-fetch issues < savings in reduced misses?
–! Higher superscalar reduces difficulty of issue bandwidth

1. Reducing Misses via Larger Block Size

2. Reducing Misses via Higher Associativity

3. Reducing Misses via Victim Cache

4. Reducing Misses via Pseudo-Associativity

5. Reducing Misses by H/W Prefetching Instr. and Data

6. Reducing Misses by S/W Prefetching Data

7. Reducing Misses by Compiler Optimizations

CPUtime = IC ! CPIExecution +
Memory accesses

Instruction
!Miss rate!Miss penalty"

$
% !Clock cycle time

•! Complier-based cache optimization reduces the miss rate without
any hardware change

•! McFarling [1989] reduced caches misses by 75% (8KB direct
mapped / 4 byte blocks)

For Instructions
–! Reorder procedures in memory to reduce conflict
–! Profiling to determine likely conflicts among groups of

instructions
For Data

–! Merging Arrays: improve spatial locality by single array of
compound elements vs. two arrays

–! Loop Interchange: change nesting of loops to access data in
order stored in memory

–! Loop Fusion: Combine two independent loops that have same
looping and some variables overlap

–! Blocking: Improve temporal locality by accessing “blocks” of
data repeatedly vs. going down whole columns or rows

Merging Arrays:

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

 int val;
 int key;

};
struct merge merged_array[SIZE];

•! Reduces misses by improving spatial locality through combined arrays that
are accessed simultaneously

Loop Interchange:
/* Before */
for (k = 0; k < 100; k = k+1)
 for (j = 0; j < 100; j = j+1)
 for (i = 0; i < 5000; i = i+1)

 x[i][j] = 2 * x[i][j];

/* After */
for (k = 0; k < 100; k = k+1)
 for (i = 0; i < 5000; i = i+1)
 for (j = 0; j < 100; j = j+1)

 x[i][j] = 2 * x[i][j];

•! Sequential accesses instead of striding through memory every 100 words;
improved spatial locality

/* Before */
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)

 a[i][j] = 1/b[i][j] * c[i][j];
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)

 d[i][j] = a[i][j] + c[i][j];

/* After */
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1) {

 a[i][j] = 1/b[i][j] * c[i][j];
 d[i][j] = a[i][j] + c[i][j];

}

Accessing array “a” and “c” would have caused twice the number of misses
without loop fusion

•! Some programs have separate sections of code that access the
same arrays (performing different computation on common data)

•! Fusing multiple loops into a single loop allows the data in cache
to be used repeatedly before being swapped out

•! Loop fusion reduces missed through improved temporal locality
(rather than spatial locality in array merging and loop interchange)

/* Before */
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1) {
 r = 0;
 for (k = 0; k < N; k = k+1)

 r = r + y[i][k] * z[k][j];
 x[i][j] = r;
 };

•! Two Inner Loops:
–! Read all NxN elements of z[]
–! Read N elements of 1 row of y[] repeatedly
–! Write N elements of 1 row of x[]

•! Capacity Misses a function of N & Cache Size:
–! 3 " N " N " 4 bytes => no capacity misses;

•! Idea: compute on B " B sub-matrix that fits

•! B called Blocking Factor
•! Memory words accessed
 2N3 + N2 ! 2N3/B +N2

•! Conflict misses can go
down too

•! Blocking is also useful for
register allocation

/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)
 for (j = jj; j < min(jj+B-1,N); j = j+1) {
 r = 0;
 for (k = kk; k < min(kk+B-1,N); k = k+1) {

 r = r + y[i][k] * z[k][j];};
 x[i][j] = x[i][j] + r;
 };

•! Traditionally blocking is used to reduce
capacity misses relying on high associativity to
tackle conflict misses

•! Choosing smaller blocking factor than the
cache capacity can also reduce conflict misses
(fewer words are active in cache)

Lam et al [1991] a blocking factor of 24 had a fifth the misses compared to a factor of 48
despite both fit in cache

CPUtime = IC ! CPIExecution +
Memory accesses

Instruction
!Miss rate!Miss penalty"

$
% !Clock cycle time

•! Reducing miss penalty can be as effective as the reducing miss rate
•! With the gap between the processor and DRAM widening, the relative

cost of the miss penalties increases over time
•! Seven techniques

–! Read priority over write on miss
–! Sub-block placement
–! Merging write buffer
–! Victim cache
–! Early Restart and Critical Word First on miss
–! Non-blocking Caches (Hit under Miss, Miss under Miss)
–! Second Level Cache

•! Can be applied recursively to Multilevel Caches
–! Danger is that time to DRAM will grow with multiple levels in between
–! First attempts at L2 caches can make things worse, since increased

worst case is worse

•! Write through with write buffers offer RAW conflicts with main memory reads on
cache misses

•! If simply wait for write buffer to empty, might increase read miss penalty (old MIPS
1000 by 50%)

•! Check write buffer contents before read; if no conflicts, let the memory access
continue

Processor
Cache

Write Buffer

DRAM

!!Write Back?
"! Read miss replacing dirty block
"! Normal: Write dirty block to memory, and then do the read
"! Instead copy the dirty block to a write buffer, then do the read, and then
 do the write
"! CPU stall less since restarts as soon as do read

•! Originally invented to reduce tag storage while avoiding the increased miss penalty
caused by large block sizes

•! Enlarge the block size while dividing each block into smaller units (sub-blocks) and
thus does not have to load full block on a miss

•! Include valid bits per sub-block to indicate the status of the sub-block (in cache or not)

Valid Bits

block

•! Don’t wait for full block to be loaded before
restarting CPU
–! Early restart

•! As soon as the requested word of the block arrives, send it
to the CPU and let the CPU continue execution

–! Critical Word First
•! Request the missed word first from memory
•! Also called wrapped fetch and requested word first

•! Complicates cache controller design
•! CWF generally useful only in large blocks
•! Given spatial locality programs tend to want

next sequential word, limits benefit

CPU
address
Data Data
in out

Write
buffer

Lower level memory

Victim cache

=?

=?

Data
Tag

•! Lower both miss rate
•! Reduce average miss penalty
•! Slightly extend the worst case miss penalty

•! Early restart still waits for the requested word to arrive before the
CPU can continue execution

•! For machines that allows out-of-order execution using a
scoreboard or a Tomasulo-style control the CPU should not stall
on cache misses

•! “Non-blocking cache” or “lock-free cache” allows data cache to
continue to supply cache hits during a miss

•! “hit under miss” reduces the effective miss penalty by working
during miss vs. ignoring CPU requests

•! “hit under multiple miss” or “miss under miss” may further lower
the effective miss penalty by overlapping multiple misses
–! Significantly increases the complexity of the cache controller

as there can be multiple outstanding memory accesses
–! Requires multiple memory banks (otherwise cannot support)
–! Pentium Pro allows 4 outstanding memory misses

Benchmark

R
at

io
 o

f t
he

 a
ve

ra
ge

 m
em

or
y

st
al

l t
im

e

•! The previous techniques reduce the impact of
the miss penalty on the CPU
–! L2 cache handles the cache-memory interface

•! Measuring cache performance

•! Local miss rate
–! misses in this cache divided by the total number of

memory accesses to this cache (MissRateL2)
•! Global miss rate (& biggest penalty!)

–! misses in this cache divided by the total number of
memory accesses generated by the CPU
(MissRateL1 " MissRateL2)

AMAT = HitTimeL1 + MissRateL1 "MissPenaltyL1
= HitTimeL1 + MissRateL1 " (HitTimeL2 + MissRateL2 "MissPenaltyL2)

(Global miss rate close to single level cache rate provided L2 >> L1)

Block size of second-level cache (byte)

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

•! 32 bit bus
•! 512KB cache

•! L1 cache directly affects
the processor design
and clock cycle: should
be simple and small

•! Bulk of optimization
techniques can go easily
to L2 cache

•! Miss-rate reduction
more practical for L2

•! Considering the L2
cache can improve the
L1 cache design,
–! e.g. use write-through if

L2 cache applies write-
back

Average Access Time = Hit Time x (1 - Miss Rate) + Miss Time x Miss Rate

•! Hit rate is typically very high compared to miss rate
–! any reduction in hit time is magnified

•! Hit time critical: affects processor clock rate
•! Three techniques to reduce hit time:

–! Simple and small caches
–! Avoid address translation during cache indexing
–! Pipelining writes for fast write hits

Simple and small caches
•! Design simplicity limits control logic complexity and

allows shorter clock cycles
•! On-chip integration decreases signal propagation

delay, thus reducing hit time
–! Alpha 21164 has 8KB Instruction and 8KB data cache and

96KB second level cache to reduce clock rate

