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•!  Temporal Locality (Locality in Time): 
! Keep most recently accessed data items closer to the processor 

•!  Spatial Locality (Locality in Space): 
! Move blocks consists of contiguous words to the faster levels  
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•! Hit: data appears in some block in the faster level (example: Block X)  
–! Hit Rate: the fraction of memory access found in the faster level 
–! Hit Time: Time to access the faster level which consists of 

•! Memory access time + Time to determine hit/miss 
•! Miss: data needs to be retrieve from a block in the slower level (Block Y) 

–! Miss Rate  = 1 - (Hit Rate) 
–! Miss Penalty: Time to replace a block in the upper level  + Time to 

deliver the block the processor 
•! Hit Time << Miss Penalty 



•! Block identification 
–! How is a block found if it is in the upper (faster) level?  

•! Tag/Block 

•! Block placement 
–! Where can a block be placed in the upper (faster) level?  

•! Fully Associative, Set Associative, Direct Mapped 

•! Block replacement 
–! Which block should be replaced on a miss?  

•! Random, LRU 

•! Write strategy 
–! What happens on a write? 

•! Write Back or Write Through (with Write Buffer) 
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Issues:  
•!How do we know that a data item is in cache? 
•! If so, How to find it?  

•! Cache: level of hierarchy closest to processor 
•! Caches first appeared in research machines in early 1960s 
•! Virtually every general-purpose computer produced today 

includes cache 
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Cache block address = (Block address) modulo (Number of cache blocks) 

Memory words can be 
mapped only to one 
cache block 

 Cache Data Valid Bit 

Byte 0 Byte 1 Byte 3 

 Cache Tag 

Byte 2 

•! Worst case is to keep replacing 
a block followed by a miss for it: 
Ping Pong Effect 

•! To reduces misses:  
–! make the cache size bigger 

–! multiple entries for the same 
Cache Index 
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blocks Tag 

Valid bit 
Word 
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•! Cache Size depends on: 
–! # cache blocks 
–! # address bits 
–! Word size 

•! Example:  
–! For n-bit address, 4-byte 

word & 1024 cache 
blocks:  

–! cache size =  
1024 [(n-10 -2) + 1 + 32] bit 

Address (showing bit positions)

20 10

Byte
offset

Valid Tag DataIndex
0
1
2

1021
1022
1023

Tag

Index

Hit Data

20 32

31 30 13 12 11 2 1 0



Address (showing bit positions)

16 12 Byte
offset

V Tag Data

Hit Data

16 32

4K
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 4 32 1 0

•! Takes advantage of spatial locality to improve performance  
•! Cache block address = (Block address) modulo (Number of cache 

blocks) 
•! Block address = (byte address) / (bytes per block) 
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•! Larger block size take advantage of spatial locality BUT: 
–! Larger block size means larger miss penalty: 

•! Takes longer time to fill up the block 
–! If block size is too big relative to cache size, miss rate will go up 

•! Too few cache blocks 

•! Average Access Time =  
 Hit Time * (1 - Miss Rate)  +  Miss Penalty * Miss Rate 
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Hardware Complexity 

•!  Set number = (Block number) modulo (Number of sets in the cache) 

•!  Increased flexibility of block placement reduces probability of cache misses 
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•! N entries for each Cache Index  
•! Example: Two-way set associative cache 

–! Cache Index selects a “set” from the cache 
–! The two tags in the set are compared in parallel 
–! Data is selected based on the tag result 



Tag size increases with 
higher level of associativity 
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0 4 31 
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•! Forget about the Cache Index 
•! Compare the Cache Tags of  all cache entries in parallel 
•! Example: Block Size = 32 Byte blocks, we need N 27-bit comparators 
•! By definition: Conflict Miss = 0 for a fully associative cache 



•! Read misses bring blocks from memory  
•! Write access requires careful maintenance of 

consistency between cache and main memory 
•! Two write strategies: 

–! Write through: write to both cache and memory 
•! Read misses cannot result in writes 
•! No allocation of a cache block is needed 
•! Always combined with write buffers so that don’t wait for 

slow memory 
–! Write back: write cache only; write to memory when 

cache block is replaced 
•! Is block clean or dirty? 
•! No writes to slow memory for repeated write accesses 
•! Requires allocation of a cache block 



Processor 
Cache 

Write Buffer 

DRAM 

•!  Processor writes data into the cache and the write buffer 
•!  Memory controller writes contents of the buffer to memory 
•!  Increased write frequency can cause saturation of write buffer 
•!  If CPU cycle time too fast and/or too many store instructions in a row: 

–!  Store buffer will overflow no matter how big you make it 
–!  The CPU Cycle Time get closer to DRAM Write Cycle Time 

•!  Write buffer saturation can be handled by installing a second level (L2) cache 

Processor 
Cache 

Write Buffer 

DRAM L2 
Cache 



•! Empirical results indicates less significance of replacement strategy with  
    increased cache sizes 

•! Straight forward for Direct Mapped since every block has only one 
location 

•! Set Associative or Fully Associative: 
–!  Random: pick any block 
–!  LRU (Least Recently Used) 

•! requires tracking block reference 
•! for two-way set associative cache, reference bit attached to every block 
•! more complex hardware is needed for higher level of cache associativity 

2-way 4-way 8-way Associativity

Size LRU Random LRU Random LRU Random

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%



  

 

Read stall cycles =  Reads
Program

"Read miss rate "  Read miss penalty

  

 

CPU time =  (CPU execution cycles +  Memory stall cycles) "Cycle time

  

 

Memory stall cycles =  Read stall cycles +  Write stall cycles

  

 

Write stall cycles =
Writes

Program
" Write miss rate "  Write miss penalty
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For write-through scheme: Hard to control, assume 
enough buffer size 

•! To enhance cache performance, one can: 
–! Reduce the miss rate (e.g. diminishing blocks collisions) 
–! Reduce the miss penalty (e.g. adding multi-level caching) 
–! Enhance hit access time (e.g. simple and small cache) 



Assume an instruction cache miss rate for gcc of 2% and a data cache miss rate of 4%. 
If a machine has a CPI of 2 without any memory stalls and the miss penalty is 40 cycles 
for all misses, determine how much faster a machine would run with a perfect cache that 
never missed. Assume 36% combined frequencies for load and store instructions 
Answer: 

Assume number of instructions = I 

Instruction miss cycles = I " 2% " 40 = 0.8 " I 

Data miss cycles = I " 36% " 4% " 40 = 0.56 " I 

Total number of memory-stall cycles = 0.8 I + 0.56 I = 1.36 I 

The CPI with memory stalls = 2 + 1.36 = 3.36 

2
363
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What happens if the CPU gets faster? 



•! Compulsory 
–! First access to a block not in cache  
–! Also called cold start or first reference misses 
–! (Misses in even an Infinite Cache) 

•! Capacity 
–! If the cache cannot contain all needed blocks 
–! Due to blocks discarded and re-retrieved 
–! (Misses in Fully Associative Cache) 

•! Conflict 
–! Set associative or direct mapped: too many blocks 

in set 
–! Also called collision or interference  
–! (Misses in N-way Associative Cache) 



•! Capacity misses can be damaging to the 
performance (excessive main memory 
access) 

•! Increasing associativity, cache size and 
block width can reduces misses 

•! Changing cache size affects both 
capacity and conflict misses since it 
spreads out references to more blocks 

•! Some optimization techniques that 
reduces miss rate also increases hit 
access time 



Conflict Based on SPEC92 

•! Compulsory misses are small compared to other 
categories 

•! Capacity misses diminish with increased cache size 
•! Increasing associativity limits the placement conflicts 

CCaacchhee  SSiizzee  ((KKBB))      

MM
iiss

ss  
RR
aa
ttee

  
pp
ee
rr  

TT
yy
pp
ee

00

00..0022

00..0044

00..0066

00..0088

00..11

00..1122

00..1144

11 22 44 88

11
66

33
22

66
44

11
22

88

11--wwaayy

22--wwaayy

44--wwaayy

88--wwaayy

CCaappaacciittyy        

CCoommppuullssoorryy        



1. Reducing Misses via Larger Block Size 

2. Reducing Misses via Higher Associativity 

3. Reducing Misses via Victim Cache 

4. Reducing Misses via Pseudo-Associativity 

5. Reducing Misses by H/W Prefetching Instr. and Data 

6. Reducing Misses by S/W Prefetching Data 

7. Reducing Misses by Compiler Optimizations 

CPUtime = IC ! CPIExecution +
Memory  accesses

Instruction
!Miss rate!Miss  penalty" 

# 
$ 
% !Clock  cycle  time



•! Larger block sizes reduces compulsory misses 
(principle of spatial locality) 

•! Conflict misses increase for larger block sizes since 
cache has fewer blocks 

•! The miss penalty usually outweighs the decrease of 
the miss rate making large block sizes less favored 



2:1 Cache Rule:  
Miss Rate for direct 
mapped cache of size N 
= Miss Rate 2-way  
   cache size N/2 

•! Greater associativity comes at the expense of 
larger hit access time 

•! Hardware complexity grows for high 
associativity and clock cycle increases 
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Associativity Cache Size 
(KB) 1-way 2-way 4-way 8-way 

1 7.65 6.60 6.22 5.44 
2 5.90 4.90 4.62 4.09 
4 4.60 3.95 3.57 3.19 
8 3.30 3.00 2.87 2.59 

16 2.45 2.20 2.12 2.04 
32 2.00 1.80 1.77 1.79 
64 1.70 1.60 1.57 1.59 

128 1.50 1.45 1.42 1.44 
 

Assume hit time is 1 clock cycle and average miss penalty is 50 clock cycles for 
a direct mapped cache. The clock cycle increases by a factor of  1.10 for 2-way, 
1.12 for 4-way, 1.14 for 8-way associative cache. Compare the average 
memory access based on the previous figure miss rates 

High associativity becomes 
a negative aspect 

A good size of direct mapped cache can 
be very efficient given its simplicity 
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•! Combines fast hit time of direct  
mapped yet still avoids conflict misses 
–! Adds small fully asssociative cache between the direct 

mapped cache and memory to place data discarded from 
cache 

–! Jouppi [1990]: 4-entry victim cache removed 20% to 95% of 
conflicts for a 4 KB direct mapped data cache 

–! Technique is used in Alpha, HP machines and does not impair 
the clock rate 



•! Combine fast hit time of Direct Mapped and 
lower conflict misses of 2-way set associative 

•! Divide cache: on a miss, check other half of 
cache to see if there, if so have a pseudo-hit 

•! Simplest implementation inverts the index field 
MSB to find the other pseudo set 

•! To limit the impact of hit time variability on 
performance, swap block contents 

•! Drawback: CPU pipeline is hard if hit takes 1 
or 2 cycles 
–! Better for caches not tied directly to  processor (L2) 
–! Used in MIPS R1000 L2 cache, similar in 

UltraSPARC 



•! Hardware pre-fetches instructions and data while handing other 
cache misses 
–! Assume pre-fetched items will be referenced shortly 

•! Pre-fetching relies on having extra memory bandwidth that can be 
used without penalty 

•! Examples of Instruction Pre-fetching: 
–!  Alpha 21064 fetches 2 blocks on a miss 
–!  Extra block placed in “stream buffer” 
–!  On miss check stream buffer 

•! Works with data blocks too: 
–! Jouppi [1990] 1 data stream buffer got 25% misses from 4KB 

cache; 4 streams got 43% 
–! Palacharla & Kessler [1994] for scientific programs for 8 

streams got 50% to 70% of misses from 2 64KB, 4-way set 
associative caches 

  

 

Average memory access time = Hit time + Miss Rate"
(Prefetch hit rate + (1#Prefetch hit rate)"Miss penalty)



for (i = 0; i < 3; i = i+1) 
  for (j = 0; j < 100; j = j+1) 
    a[i][j] = b[j][0] * b[j+1][0]; 

for (j = 0; j < 100; j = j+1) 
    pre-fetch (b[i+7][0]); 
    a[0][j] = b[j][0] * b[j+1][0]; 
    for (i = 1; i < 3; i = i+1) 
       pre-fetch (a[i][j+7]); 
       a[i-1][j] = b[j][0] * b[j+1][0]; 

•! Uses special instructions to pre-fetch data: 
–!  Load data into register (HP PA-RISC loads) 
–!  Cache Pre-fetch: load into cache (MIPS IV, PowerPC, SPARC v. 9) 

•! Special pre-fetching instructions cannot cause faults (undesired exceptions) since 
it is a form of speculative execution 

•! Makes sense if the processor can proceeds without blocking for a cache access 
(lock-free cache) 

•! Loops are typical target for pre-fetching after unrolling (miss penalty is small) or 
after applying software pipelining (miss penalty is large) 

•! Issuing Pre-fetch Instructions takes time 
–!  Is cost of pre-fetch issues < savings in reduced misses? 
–!  Higher superscalar reduces difficulty of issue bandwidth 



1. Reducing Misses via Larger Block Size 

2. Reducing Misses via Higher Associativity 

3. Reducing Misses via Victim Cache 

4. Reducing Misses via Pseudo-Associativity 

5. Reducing Misses by H/W Prefetching Instr. and Data 

6. Reducing Misses by S/W Prefetching Data 

7. Reducing Misses by Compiler Optimizations 

CPUtime = IC ! CPIExecution +
Memory  accesses

Instruction
!Miss rate!Miss  penalty" 

# 
$ 
% !Clock  cycle  time



•! Complier-based cache optimization reduces the miss rate without 
any hardware change 

•! McFarling [1989] reduced caches misses by 75% (8KB direct 
mapped / 4 byte blocks) 

For Instructions 
–! Reorder procedures in memory to reduce conflict 
–! Profiling to determine likely conflicts among groups of 

instructions 
For Data 

–! Merging Arrays: improve spatial locality by single array of 
compound elements vs. two arrays 

–! Loop Interchange: change nesting of loops to access data in 
order stored in memory 

–! Loop Fusion: Combine two independent loops that have same 
looping and some variables overlap 

–! Blocking: Improve temporal locality by accessing “blocks” of 
data repeatedly vs. going down whole columns or rows 



Merging Arrays: 

/* Before: 2 sequential arrays */ 
int val[SIZE]; 
int key[SIZE]; 

/* After: 1 array of stuctures */ 
struct merge { 

 int val; 
 int key; 

}; 
struct merge merged_array[SIZE]; 

•! Reduces misses by improving spatial locality through combined arrays that 
are accessed simultaneously 

Loop Interchange: 
/* Before */ 
for (k = 0; k < 100; k = k+1) 
   for (j = 0; j < 100; j = j+1) 
      for (i = 0; i < 5000; i = i+1) 

 x[i][j] = 2 * x[i][j]; 

/* After */ 
for (k = 0; k < 100; k = k+1) 
   for (i = 0; i < 5000; i = i+1) 
      for (j = 0; j < 100; j = j+1) 

 x[i][j] = 2 * x[i][j]; 

•! Sequential accesses instead of striding through memory every 100 words; 
improved spatial locality 



/* Before */ 
for (i = 0; i < N; i = i+1) 
   for (j = 0; j < N; j = j+1) 

 a[i][j] = 1/b[i][j] * c[i][j]; 
for (i = 0; i < N; i = i+1) 
   for (j = 0; j < N; j = j+1) 

 d[i][j] = a[i][j] + c[i][j]; 

/* After */ 
for (i = 0; i < N; i = i+1) 
   for (j = 0; j < N; j = j+1) {

 a[i][j] = 1/b[i][j] * c[i][j]; 
 d[i][j] = a[i][j] + c[i][j]; 

} 

Accessing array “a” and “c” would have caused twice the number of misses 
without loop fusion 

•! Some programs have separate sections of code that access the 
same arrays (performing different computation on common data)   

•! Fusing multiple loops into a single loop allows the data in cache 
to be used repeatedly before being swapped out 

•! Loop fusion reduces missed through improved temporal locality 
(rather than spatial locality in array merging and loop interchange) 



/* Before */ 
for (i = 0; i < N; i = i+1) 
   for (j = 0; j < N; j = j+1) { 
      r = 0; 
      for (k = 0; k < N; k = k+1) 

 r = r + y[i][k] * z[k][j]; 
      x[i][j] = r; 
      }; 

•! Two Inner Loops: 
–! Read all NxN elements of z[] 
–! Read N elements of 1 row of y[] repeatedly 
–! Write N elements of 1 row  of x[] 

•! Capacity Misses a function of N & Cache Size: 
–!  3 " N " N " 4 bytes => no capacity misses;  

•! Idea: compute on B " B sub-matrix that fits 



•! B called Blocking Factor 
•! Memory words accessed  
    2N3 + N2 ! 2N3/B +N2 

•! Conflict misses can go 
down too 

•! Blocking is also useful for 
register allocation 

/* After */ 
for (jj = 0; jj < N; jj = jj+B) 
for (kk = 0; kk < N; kk = kk+B) 
for (i = 0; i < N; i = i+1) 
    for (j = jj; j < min(jj+B-1,N); j = j+1) { 
        r = 0; 
        for (k = kk; k < min(kk+B-1,N); k = k+1) { 

 r = r + y[i][k] * z[k][j];}; 
        x[i][j] = x[i][j] + r; 
        }; 



•! Traditionally blocking is used to reduce 
capacity misses relying on high associativity to 
tackle conflict misses 

•! Choosing smaller blocking factor than the 
cache capacity can also reduce conflict misses 
(fewer words are active in cache) 

Lam et al [1991] a blocking factor of 24 had a fifth the misses compared to a factor of 48 
despite both fit in cache 





CPUtime = IC ! CPIExecution +
Memory  accesses

Instruction
!Miss rate!Miss  penalty" 

# 
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% !Clock  cycle  time

•! Reducing miss penalty can be as effective as the reducing miss rate 
•! With the gap between the processor and DRAM widening, the relative 

cost of the miss penalties increases over time 
•! Seven techniques 

–! Read priority over write on miss 
–! Sub-block placement 
–! Merging write buffer 
–! Victim cache 
–! Early Restart and Critical Word First on miss 
–! Non-blocking Caches (Hit under Miss, Miss under Miss) 
–! Second Level Cache 

•! Can be applied recursively to Multilevel Caches 
–! Danger is that time to DRAM will grow with multiple levels in between 
–! First attempts at L2 caches can make things worse, since increased 

worst case is worse 



•! Write through with write buffers offer RAW conflicts with main memory reads on 
cache misses 

•! If simply wait for write buffer to empty, might increase read miss penalty (old MIPS 
1000 by 50% ) 

•! Check write buffer contents before read; if no conflicts, let the memory access 
continue 

Processor 
Cache 

Write Buffer 

DRAM 

!!Write Back? 
"! Read miss replacing dirty block 
"! Normal: Write dirty block to memory, and then do the read 
"! Instead copy the dirty block to a write buffer, then do the read, and then  
    do the write 
"! CPU stall less since restarts as soon as do read 



•! Originally invented to reduce tag storage while avoiding the increased miss penalty 
caused by large block sizes 

•! Enlarge the block size while dividing each block into smaller units (sub-blocks) and 
thus does not have to load full block on a miss 

•! Include valid bits per sub-block to indicate the status of the sub-block (in cache or not) 

Valid Bits 



block 

•! Don’t wait for full block to be loaded before 
restarting CPU 
–! Early restart 

•! As soon as the requested word of the block arrives, send it 
to the CPU and let the CPU continue execution 

–! Critical Word First 
•! Request the missed word first from memory  
•! Also called wrapped fetch and requested word  first 

•! Complicates cache controller design 
•! CWF generally useful only in large blocks  
•! Given spatial locality programs tend to want 

next sequential word, limits benefit 
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•! Lower both miss rate  
•! Reduce average miss penalty  
•! Slightly extend the worst case miss penalty 



•! Early restart still waits for the requested word to arrive before the 
CPU can continue execution 

•! For machines that allows out-of-order execution using a 
scoreboard or a Tomasulo-style control the CPU should not stall 
on cache misses 

•! “Non-blocking cache” or “lock-free cache” allows data cache to 
continue to supply cache hits during a miss 

•! “hit under miss”  reduces the effective miss penalty by working 
during miss vs. ignoring CPU requests 

•! “hit under multiple miss” or “miss under miss”  may further lower 
the effective miss penalty by overlapping multiple misses 
–! Significantly increases the complexity of the cache controller 

as there can be multiple outstanding memory accesses 
–! Requires multiple memory banks (otherwise cannot support) 
–! Pentium Pro allows 4 outstanding memory misses 
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•! The previous techniques reduce the impact of 
the miss penalty on the CPU 
–! L2 cache handles the cache-memory interface 

•! Measuring cache performance     

•! Local miss rate 
–! misses in this cache divided by the total number of 

memory accesses to this cache (MissRateL2) 
•! Global miss rate (& biggest penalty!) 

–! misses in this cache divided by the total number of 
memory accesses generated by the CPU 
(MissRateL1 " MissRateL2) 

  

 

AMAT = HitTimeL1 + MissRateL1 "MissPenaltyL1
= HitTimeL1 + MissRateL1 " (HitTimeL2 + MissRateL2 "MissPenaltyL2 )



(Global miss rate close to single level cache rate provided L2 >> L1) 
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•! 32 bit bus 
•! 512KB cache 

•! L1 cache directly affects 
the processor design 
and clock cycle: should 
be simple and small 

•! Bulk of optimization 
techniques can go easily 
to L2 cache 

•! Miss-rate reduction 
more practical for L2 

•! Considering the L2 
cache can improve the 
L1 cache design,  
–! e.g. use write-through if 

L2 cache applies write-
back 



Average Access Time = Hit Time x (1 - Miss Rate)  +  Miss Time x Miss Rate 

•! Hit rate is typically very high compared to miss rate 
–! any reduction in hit time is magnified 

•! Hit time critical: affects processor clock rate 
•! Three techniques to reduce hit time: 

–! Simple and small caches 
–! Avoid address translation during cache indexing 
–! Pipelining writes for fast write hits 

Simple and small caches 
•! Design simplicity limits control logic complexity and 

allows shorter clock cycles  
•! On-chip integration decreases signal propagation 

delay, thus reducing hit time  
–! Alpha 21164 has 8KB Instruction and 8KB data cache and 

96KB second level cache to reduce clock rate 


