
Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides
Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

•! CPI = (1-branch%) * non-branch CPI
 + branch% * branch CPI

•! CPI = (1-branch%) * 1
 + branch% * (1 + penalty)

•! CPI = 1 + (branch% * penalty)
•! penalty = not taken% * not taken cost

 + taken% * taken cost

•! Instruction Level Parallelism increases
throughput
–!Worse, the more advanced the method

•! Deep pipeline, multiple functional units, n-issue per
clock, …

•! Control dependence rapidly becomes the
limiting factor to the amount of ILP

•! Compiler-based techniques can only rely
on static program properties to handle
control hazards

•! Hardware-based techniques refer to the
dynamic behavior of the program to predict
the outcome of a branch

•! Assume
–!20% of instructions are branches
–!53% of branches are taken

•! Predict not taken
–!CPI = 1 + 20% * (53%*1 + 47%*0) = 1.106

•! Predict taken
–!CPI = 1 + 20% * (53%*1 + 47%*1) = 1.2

Penalty for being wrong

Penalty for not having the address ready in time

Penalty for being wrong

Figure: Dave Patterson

•! Predict not-taken: still stalls to wait for
branch target computation

•! If address could be guessed, the branch
penalty becomes zero

•! Cache predicted address based on
address of branch instruction

•! Complications for complex predictors: do
we know in time?

•! No branch delay if the a
branch prediction entry
is found and is correct

•! A penalty of two cycle is
imposed for a wrong
prediction or a cache
miss

•! Cache update on
misprediction and
misses can extend the
time penalty

•! Dealing with misses or
misprediction is
expensive and should
be optimized

M
is

pr
ed

ic
tio

n
ra

te

•! Branch target caching can be applied to expedite
unconditional jumps (branch folding) and returns for
procedure calls

•! For calls from multiple sites, not clustered in time, a stack
implementation of the branch target cache can be useful

•! Simplest dynamic branch-prediction scheme
–! Use a branch history table to track when the branch was

taken and not taken
–! Branch history table is a small 1-bit buffer indexed by lower

bits of PC address with the bit is set to reflect the whether or
not branch taken last time

•! Performance = ƒ(accuracy, cost of misprediction)

•! Problem: in a nested loop, 1-bit branch history table
will cause two mispredictions:
–! End of loop case, when it exits instead of looping
–! First time through loop on next time through code, when it

predicts exit instead of looping

•! A two-bit buffer better captures the history of
the branch instruction

•! A prediction must miss twice to change

•! 2-bit is a special case of n-bit counter
–!For every entry in the prediction buffer
–! Increment/decrement if branch taken/not
–! If the counter value is one half of the

maximum value (2n-1), predict taken
•! Slow to change prediction, but can

change

SP
EC

89
 b

en
ch

m
ar

ks

•!Prediction accuracy of a 4096-entry
prediction buffer ranges from 82% to
99% for the SPEC89 benchmarks

•!The performance impact depends on
frequency of branching instructions
and the penalty of misprediction

SP
EC

89
 b

en
ch

m
ar

ks

!! 4096 entries (2 bits/entry) !! Unlimited entries (2 bits/entry)

•!Buffer size has little impact
beyond a certain size

•!Misprediction is because either:
–!Wrong guess for that branch
–!Got branch history of wrong

branch (different branches
with same low-bits of PC)

If (aa == 2)
 aa = 0;

If (bb == 2)
 bb = 0;

If (aa != bb) {

DSUBUI R3, R1, #2
BNEZ R3, L1 ; branch b1 (aa!=2)
ANDI R1, R1, #0 ; aa=0

L1: SUBUI R3, R2, #2
BNEZ R3, L2 ; branch b2 (bb!=2)
ANDI R2, R2, #0 ; bb=0

L2: SUBU R3, R1, R2 ; R3=aa-bb
BEQZ R3, L3 ; branch b3 (aa==bb)

Hypothesis: recent branches are correlated; that is, behavior of
recently executed branches affects prediction of current branch

•! The behavior of branch b3 is correlated with the behavior of b1 and b2
•! Clearly of both branches b1 and b2 are untaken, then b3 will be taken
•! A predictor that uses only the behavior of a single branch to predict the

outcome of that branch can never capture this behavior
•! Branch predictors that use the behavior of other branches to make a prediction

are called correlating or two-level predictors

Total size = 2m ! n ! # prediction entries selected by branch address

•! Record m most recently
executed branches as taken or
not taken, and use that pattern to
select the proper branch history
table

•! (m,n) predictor means record
last m branches to select
between 2m history tables each
with n-bit counters

–! Old 2-bit branch history table is
a (0,2) predictor

•! In a (2,2) predictor, the behavior
of recent branches selects
between, four predictions of next
branch, updating just that
prediction

!! 4096 entries (2 bits/entry)

!! Unlimited entries (2 bits/entry)

!! 1024 entries (2,2)

if (d==0)
 d=1;
if (d==1)
 ….
d = 4 - 2*d;

BNEZ R1, L1 ; branch b1 (d!=0)
DADDI R1, R0, #1 ; d==0, sp d=1

L1: DSUBUI R3, R1, #1
BNEZ R3, L2 ; branch b2 (d!=1)

….
L2:

•! Assume that d has values 0, 1, or 2
(alternating between 0, 2 as we enter this segment)

•! Assume that the sequence will be executed repeatedly
•! Ignore all other branches including those causing the

sequence to repeat
•! All branches are initially predicted to untaken state

if (d==0)
 d=1;
if (d==1)

BNEZ R1, L1 ; branch b1 (d!=0)
DADDI R1, R0, #1 ; d==0, sp d=1

L1: DSUBUI R3, R1, #1
BNEZ R3, L2 ; branch b2 (d!=1)

….
L2:

With a single bit predictor

NT = Not Taken (if condition is false)
T = Taken (if condition is true)

•!All branches are mispredicted

d=? b1
prediction

b1
action

New b1
prediction

b2
prediction

b2
action

New b2
prediction

2 NT T T NT T T
0 T NT NT T NT NT
2 NT T T NT T T
0 T NT NT T NT NT

if (d==0)
 d=1;
if (d==1)

BNEZ R1, L1 ; branch b1 (d!=0)
DADDI R1, R0, #1 ; d==0, sp d=1

L1: DSUBUI R3, R1, #1
BNEZ R3, L2 ; branch b2 (d!=1)

….
L2:

With one bit predictor with one bit of correlation

(previous/predicition)

•!Except for first iteration, all branches are correctly predicted

•!Selection between the
two predictors are
based on a selector (2-
bit counter)

•!Make a transition with
two wrong prediction
using the current table
for which the correct
prediction would have
been possible using
the other predictor

Predictor_1/Predictor_2

•!Multilevel branch predictors use several levels of branch prediction
tables together with an algorithm to choose among them

•!Tournament selectors are the most popular form of multilevel
branch predictors (e.g. DEC Alpha 21264)

•!Tournament predictors combines both local and global predictor

C
on

di
tio

na
l b

ra
nc

h
m

is
pr

ed
ic

tio
n

ra
te

 Based on SPEC 89 benchmark

Tournament predictors slightly outperform correlating predictors

