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•!  Washer takes 30 min, Dryer takes 40 min, folding takes 20 min 
•!  Sequential laundry takes 6 hours for 4 loads 
•!  If they learned pipelining, how long would laundry take?  
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•!  Pipelining means start work as soon as possible 
•!  Pipelined laundry takes 3.5 hours for 4 loads  
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•!  Pipelining doesn’t help latency of single 
task, it helps throughput of entire 
workload 

•!  Pipeline rate limited by slowest pipeline 
stage 

•!  Multiple tasks operating simultaneously 
using different resources 

•!  Potential speedup = Number pipe 
stages 

•!  Unbalanced lengths of pipe stages 
reduces speedup 

•!  Time to “fill” pipeline and time to “drain” 
it reduce speedup 

•!  Stall for Dependencies 
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op target address 
0 26 31 

6 bits 26 bits 

op rs rt rd shamt funct 
0 6 11 16 21 26 31 

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 

op rs rt immediate 
0 16 21 26 31 

6 bits 16 bits 5 bits 5 bits 

•! RISC characterized by the following 
features that simplify implementation: 
–!All ALU operations apply only on registers  
–!Memory is affected only by load and store 
–! Instructions follow very few formats and 

typically are of the same size 
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!! Instruction fetch cycle (IF) 
 IR ! Mem[PC];    NPC ! PC + 4 

"! Instruction decode/register fetch cycle (ID) 
 A ! Regs[IR6..10];        B ! Regs[IR11..15];        Imm ! ((IR16)16 ##IR16..31) 

#! Execution/effective address cycle (EX) 
 Memory ref:   ALUOutput ! A + Imm; 
Reg-Reg ALU:  ALUOutput ! A func B; 
Reg-Imm ALU:  ALUOutput ! A op Imm; 
Branch:   ALUOutput ! NPC + Imm;       Cond ! (A op 0) 

$! Memory access/branch completion cycle (MEM) 
Memory ref:    LMD ! Mem[ALUOutput]    or    Mem(ALUOutput] ! B; 
Branch:    if (cond) PC !ALUOutput; 

%! Write-back cycle (WB) 
Reg-Reg ALU:  Regs[IR16..20] ! ALUOutput; 
Reg-Imm ALU:  Regs[IR11..15] ! ALUOutput; 
Load:   Regs[IR11..15] ! LMD; 
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•!  The load instruction is the longest 
•!  All instructions follows at most the following five steps: 

–!  Ifetch:  Instruction Fetch 
•!  Fetch the instruction from the Instruction Memory and update PC 

–!  Reg/Dec: Registers Fetch and Instruction Decode 
–!  Exec:  Calculate the memory address 
–!  Mem:  Read the data from the Data Memory 
–!  WB:  Write the data back to the register file 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 

Ifetch Reg/Dec Exec Mem WB Load 
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IFetch Dec Exec Mem WB 

IFetch Dec Exec Mem WB 

IFetch Dec Exec Mem WB 

IFetch Dec Exec Mem WB 

IFetch Dec Exec Mem WB 

IFetch Dec Exec Mem WB Program Flow 

Time 

 Pipelining improves performance by increasing instruction throughput 

•! Start handling next instruction while the current 
instruction is in progress 

•! Feasible when different devices at different stages 

  

 

Time between instructionspipelined =
Time between instructionsnonpipelined

Number of pipe stages



Ideal and upper bound for speedup is number of stages in the pipeline 
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•! Cycle time long enough for longest instruction 
•! Shorter instructions waste time 
•! No overlap 
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•! Cycle time long enough for longest stage 
•! Shorter stages waste time 
•! Shorter instructions can take fewer cycles 
•! No overlap 
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•! Cycle time long enough for longest stage 
•! Shorter stages waste time 
•! No additional benefit from shorter instructions 
•! Overlap instruction execution 
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•! Pipeline increases the instruction throughput 
–! not execution time of an individual instruction 

•! An individual instruction can be slower:  
–! Additional pipeline control 
–! Imbalance among pipeline stages 

•! Suppose we execute 100 instructions: 
–!  Single Cycle Machine 

•! 45 ns/cycle  x 1 CPI x 100 inst = 4500 ns 
–!  Multi-cycle Machine 

•! 10 ns/cycle x 4.2 CPI (due to inst mix) x 100 inst = 4200 ns 
–!  Ideal 5 stages pipelined machine 

•! 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns 

•! Lose performance due to fill and drain 



Data Stationary 

•! Every stage must be completed in one clock cycle to avoid stalls 
•! Values must be latched to ensure correct execution of 

instructions 
•! The PC multiplexer has moved to the IF stage to prevent two 

instructions from updating the PC simultaneously (in case of 
branch instruction) 



Stage Any Instruction

IF
IF/ID.IR !MEM[PC] ;
IF/ID.NPC,PC ! ( if ( (EX/MEM.opcode == branch) & EX/MEM.cond)
{EX/MEM.ALUOutput } else { PC + 4 } ) ;

ID
ID/EX.A = Regs[IF/ID. IR 6..10]; ID/EX.B !Regs[IF/ID. IR 11..15];
ID/EX.NPC !IF/ID.NPC ; ID/EX.IR !IF/ID.IR;
ID/EX.Imm ! (IF/ID. IR 16) 16 ## IF/ID. IR 16..31;

ALU Load or Store Branch

EX

EX/MEM.IR = ID/EX.IR;
EX/MEM. ALUOutput !
ID/EX.A func ID/EX.B;
Or
EX/MEM.ALUOutput !
ID/EX.A op ID/EX.Imm;
EX/MEM.cond ! 0;

EX/MEM.IR ! ID/EX.IR;
EX/MEM.ALUOutput !
ID/EX.A + ID/EX.Imm;

EX/MEM.cond ! 0;
EX/MEM.B !ID/EX.B;

EX/MEM.ALUOutput !
ID/EX.NPC + ID/EX.Imm;

EX/MEM.cond !
(ID/EX.A op 0);

MEM

MEM/WB.IR !EX/MEM.IR;
MEM/WB.ALUOutput !
EX/MEM.ALUOutput;

MEM/WB.IR ! EX/MEM.IR;
MEM/WB.LMD !
Mem[EX/MEM.ALUOutput] ;
Or
Mem[EX/MEM.ALUOutput] !
EX/MEM.B ;

WB

Regs[MEM/WB. IR 16..20] !
EM/WB.ALUOutput;
Or
Regs[MEM/WB. IR 11..15] !
MEM/WB.ALUOutput ;

For load only:
Regs[MEM/WB. IR 11..15] !
MEM/WB.LMD;



•! Cases that affect instruction execution                     
semantics and thus need to be detected and corrected 

•! Hazards types 
–! Structural hazard: attempt to use a resource two different 

ways at same time 
•! Single memory for instruction and data 

–! Data hazard: attempt to use item before it is ready 
•! Instruction depends on result of prior instruction still in the 

pipeline 
–! Control hazard: attempt to make a decision before condition is 

evaluated 
•! branch instructions 

•! Hazards can always be resolved by waiting 
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1.! Wait 
–! Must detect the hazard 

•! Easier with uniform ISA 
–! Must have mechanism to stall 

•! Easier with uniform pipeline organization 

2.! Throw more hardware at the problem 
–! Use instruction & data cache rather than 

direct access to memory 
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Pipelining Speedup =
Average instruction time unpipelined
Average instruction time pipelined

=
CPI unpipelined
CPI pipelined

"
Clock cycle unpipelined
Clock cycle pipelined

  

 

Speedup  =
CPI unpipelined

1 +  Pipeline stall cycles per instruction
"

Clock cycle unpipelined
Clock cycle pipelined

  

 

CPI pipelined = Ideal CPI+ Pipeline stall cycles per instruction
= 1+ Pipeline stall cycles per instruction

  

 

Ideal CPI pipelined = 1

  

 

Speedup  =
Pipeline depth

1 +  Pipeline stall cycles per instruction

Assuming all pipeline stages are balanced 
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I: add r1,r2,r3 
J: sub r4,r1,r3 

•! Read After Write (RAW)  
InstrJ tries to read operand before InstrI writes 
it 

   
•! Caused by a “Data Dependence” (in compiler 

nomenclature).  This hazard results from an 
actual need for communication. 
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•! Write After Read (WAR)  
InstrJ writes operand before InstrI reads it 

•! Called an “anti-dependence” in compilers. 
–! This results from reuse of the name “r1”. 

•! Can’t happen in MIPS 5 stage pipeline because: 
–!  All instructions take 5 stages, and 
–!  Reads are always in stage 2, and  
–!  Writes are always in stage 5 

I: sub r4,r1,r3  
J: add r1,r2,r3 
K: mul r6,r1,r7 
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•! Write After Write (WAW)  
InstrJ writes operand before InstrI writes it. 

•! Called an “output dependence” in compilers 
–! This also results from the reuse of name “r1”. 

•! Can’t happen in MIPS 5 stage pipeline:  
–!  All instructions take 5 stages, and  
–!  Writes are always in stage 5 

•! Do see WAR and WAW in more complicated pipes 

I: mul r1,r4,r3  
J: add r1,r2,r3 
K: sub r6,r1,r7 
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•! Adding hardware? How? Where? 
•! Detection? 
•! Compilation techniques? 

•! What is the cost of load delays? 
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Try producing fast code for 
  a = b + c; 
  d = e – f; 

assuming a, b, c, d ,e, and f in memory.  
Slow code: 

  LW  Rb,b 
  LW  Rc,c 
  ADD  Ra,Rb,Rc 
  SW   a,Ra  
  LW  Re,e  
  LW  Rf,f 
  SUB  Rd,Re,Rf 
  SW  d,Rd 

Fast code: 
  LW  Rb,b 
  LW  Rc,c 
  LW  Re,e  
  ADD  Ra,Rb,Rc 
  LW  Rf,f 
  SW   a,Ra  
  SUB  Rd,Re,Rf 
  SW  d,Rd 
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•! What is exposed about this organizational hazard in the 
instruction set? 

•! k cycle delay? 
–! bad, CPI is not part of ISA 

•! k instruction slot delay 
–! load should not be followed by use of the value in the next k 

instructions 
•! Nothing, but code can reduce run-time delays 
•! MIPS did the transformation in the assembler 
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•! Cases that affect instruction execution                     
semantics and thus need to be detected and corrected 

•! Hazards types 
–! Structural hazard: attempt to use a resource two different 

ways at same time 
•! Single memory for instruction and data 

–! Data hazard: attempt to use item before it is ready 
•! Instruction depends on result of prior instruction still in the 

pipeline 
–! Control hazard: attempt to make a decision before condition is 

evaluated 
•! branch instructions 

•! Hazards can always be resolved by waiting 



10: beq r1,r3,36 

14: and r2,r3,r5  

18: or  r6,r1,r7 

22: add r8,r1,r9 

36: xor r10,r1,r11 
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•! If 30% branch, 3-cycle stall significant! 
•! Two part solution: 

–!Determine branch taken or not sooner, AND 
–!Compute taken branch address earlier 

•! MIPS branch tests if register = 0 or " 0 
•! MIPS Solution: 

–!Move Zero test to ID/RF stage 
–!Adder to calculate new PC in ID/RF stage 
–!1 clock cycle penalty for branch versus 3 
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1.! Stall until branch direction is clear 
2.! Predict Branch Not Taken 

–! Execute successor instructions in sequence 
–! “Squash” instructions in pipeline if branch taken 
–! Advantage of late pipeline state update 
–! 47% MIPS branches not taken on average 
–! PC+4 already calculated, so use it to get next instruction 

3.! Predict Branch Taken 
–! 53% MIPS branches taken on average 
–! But haven’t calculated branch target address in MIPS 

•! MIPS still incurs 1 cycle branch penalty 
•! Other machines: branch target known before outcome 
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4.! Delayed Branch 
–! Define branch to take place AFTER a following 

instruction 
branch instruction 

 sequential successor1 
 sequential successor2 
 ........ 
 sequential successorn 

........ 
 branch target if taken 

–! 1 slot delay allows proper decision and branch 
target address in 5 stage pipeline 

–! MIPS uses this 

Branch delay of length n 
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•! Where to get branch delay slot instructions? 
–! Before branch instruction 
–! From the target address 

•! only valuable when branch taken 
–! From fall through 

•! only valuable when branch not taken 
–! Canceling branches allow more slots to be filled 

•! Compiler effectiveness for single delay slot: 
–! Fills about 60% of branch delay slots 
–! About 80% of instructions executed in branch delay slots useful in 

computation 
–! 48% (60% x 80%) of slots usefully filled 

•! Delayed Branch downside: 7-8 stage pipelines, multiple 
instructions issued per clock (superscalar) 
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Best scenario Good for loops Good taken strategy 

R4 must be 
temp reg. 



Scheduling 
Strategy Requirements Improves performance 

when? 
(a) From before Branch must not depend on the 

rescheduled instructions 
Always 

(b) From target Must be OK to execute rescheduled 
instructions if branch is not taken. 
May need to duplicate instructions. 

When branch is taken. May 
enlarge programs if 
instructions are duplicated. 

(c) From fall  
      through 

Must be okay to execute instructions 
if branch is taken. 

When branch is not taken. 

 

•! Limitation on delayed-branch scheduling arise from: 
–! Restrictions on instructions scheduled into the delay slots 
–! Ability to predict at compile-time whether a branch is likely to be 

taken 
•! May have to fill with a no-op instruction 

–! Average 30% wasted 
•! Additional PC is needed to allow safe operation in case of 

interrupts (more on this later) 



Assume:  
14% Conditional & Unconditional  
65% Taken; 52% Delay slots not usefully filled 

  

 

Pipeline speedup =  Pipeline depth
1 +  Pipeline stall CPI

=  Pipeline depth
1 +  Branch frequency"Branch penalty

Scheduling Scheme Branch 
Penalty 

CPI Pipeline 
Speedup 

Speedup 
vs stall 

Stall pipeline 3.00 1.42 3.52 1.00 
Predict taken 1.00 1.14 4.39 1.25 
Predict not taken 1.00 1.09 4.58 1.30 
Delayed branch 0.52 1.07 4.66 1.32 
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Predict taken 

Profile based 

•! Examination of program behavior 
–! Assume branch is usually taken based on statistics but misprediction 

rate still 9%-59% 
•! Predict on branch direction forward/backward based on statistics 

and code generation convention   
–! Profile information from earlier program runs 


