
Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides
Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

•! Washer takes 30 min, Dryer takes 40 min, folding takes 20 min
•! Sequential laundry takes 6 hours for 4 loads
•! If they learned pipelining, how long would laundry take?

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

Slide: Dave Patterson

Time

A

B

C

D

T
a
s
k

O
r
d
e
r

•! Pipelining means start work as soon as possible
•! Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Slide: Dave Patterson

•! Pipelining doesn’t help latency of single
task, it helps throughput of entire
workload

•! Pipeline rate limited by slowest pipeline
stage

•! Multiple tasks operating simultaneously
using different resources

•! Potential speedup = Number pipe
stages

•! Unbalanced lengths of pipe stages
reduces speedup

•! Time to “fill” pipeline and time to “drain”
it reduce speedup

•! Stall for Dependencies

Time

6 PM 7 8 9

Slide: Dave Patterson

A

B

C

D

T
a
s
k

O
r
d
e
r

30 40 40 40 40 20

op target address
0 26 31

6 bits 26 bits

op rs rt rd shamt funct
0 6 11 16 21 26 31

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

op rs rt immediate
0 16 21 26 31

6 bits 16 bits 5 bits 5 bits

•! RISC characterized by the following
features that simplify implementation:
–!All ALU operations apply only on registers
–!Memory is affected only by load and store
–! Instructions follow very few formats and

typically are of the same size

!! Figure: Dave Patterson

!! Instruction fetch cycle (IF)
 IR ! Mem[PC]; NPC ! PC + 4

"! Instruction decode/register fetch cycle (ID)
 A ! Regs[IR6..10]; B ! Regs[IR11..15]; Imm ! ((IR16)16 ##IR16..31)

#! Execution/effective address cycle (EX)
 Memory ref: ALUOutput ! A + Imm;
Reg-Reg ALU: ALUOutput ! A func B;
Reg-Imm ALU: ALUOutput ! A op Imm;
Branch: ALUOutput ! NPC + Imm; Cond ! (A op 0)

$! Memory access/branch completion cycle (MEM)
Memory ref: LMD ! Mem[ALUOutput] or Mem(ALUOutput] ! B;
Branch: if (cond) PC !ALUOutput;

%! Write-back cycle (WB)
Reg-Reg ALU: Regs[IR16..20] ! ALUOutput;
Reg-Imm ALU: Regs[IR11..15] ! ALUOutput;
Load: Regs[IR11..15] ! LMD;

!! "! $! %! #!
Figure: Dave Patterson

•! The load instruction is the longest
•! All instructions follows at most the following five steps:

–! Ifetch: Instruction Fetch
•! Fetch the instruction from the Instruction Memory and update PC

–! Reg/Dec: Registers Fetch and Instruction Decode
–! Exec: Calculate the memory address
–! Mem: Read the data from the Data Memory
–! WB: Write the data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WB Load

Slide: Dave Patterson

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB Program Flow

Time

 Pipelining improves performance by increasing instruction throughput

•! Start handling next instruction while the current
instruction is in progress

•! Feasible when different devices at different stages

Time between instructionspipelined =
Time between instructionsnonpipelined

Number of pipe stages

Ideal and upper bound for speedup is number of stages in the pipeline

Instruction
fetch Reg ALU Data

access Reg

8 ns Instruction
fetch Reg ALU Data

access Reg

8 ns
Instruction
fetch

8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program
execution
order
(in instructions)

Instruction
fetch Reg ALU Data

access Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction
fetch Reg ALU Data

access Reg

2 ns Instruction
fetch Reg ALU Data

access Reg

2 ns 2 ns 2 ns 2 ns 2 ns

Program
execution
order
(in instructions)

Time between first
& fourth instructions
is 3 ! 2 = 6 ns

Time between first
& fourth instructions
is 3 ! 8 = 24 ns

Clk

Load Store Waste

Cycle 1 Cycle 2

Figure: Dave Patterson

•! Cycle time long enough for longest instruction
•! Shorter instructions waste time
•! No overlap

Figure: Dave Patterson

•! Cycle time long enough for longest stage
•! Shorter stages waste time
•! Shorter instructions can take fewer cycles
•! No overlap

Cycle 1

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Ifetch Reg Exec Mem
Load Store

Ifetch
R-type

Clk

Figure: Dave Patterson

•! Cycle time long enough for longest stage
•! Shorter stages waste time
•! No additional benefit from shorter instructions
•! Overlap instruction execution

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10
Clk

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec Mem Wr Store

Ifetch Reg Exec Mem Wr R-type

•! Pipeline increases the instruction throughput
–! not execution time of an individual instruction

•! An individual instruction can be slower:
–! Additional pipeline control
–! Imbalance among pipeline stages

•! Suppose we execute 100 instructions:
–! Single Cycle Machine

•! 45 ns/cycle x 1 CPI x 100 inst = 4500 ns
–! Multi-cycle Machine

•! 10 ns/cycle x 4.2 CPI (due to inst mix) x 100 inst = 4200 ns
–! Ideal 5 stages pipelined machine

•! 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

•! Lose performance due to fill and drain

Data Stationary

•! Every stage must be completed in one clock cycle to avoid stalls
•! Values must be latched to ensure correct execution of

instructions
•! The PC multiplexer has moved to the IF stage to prevent two

instructions from updating the PC simultaneously (in case of
branch instruction)

Stage Any Instruction

IF
IF/ID.IR !MEM[PC] ;
IF/ID.NPC,PC ! (if ((EX/MEM.opcode == branch) & EX/MEM.cond)
{EX/MEM.ALUOutput } else { PC + 4 }) ;

ID
ID/EX.A = Regs[IF/ID. IR 6..10]; ID/EX.B !Regs[IF/ID. IR 11..15];
ID/EX.NPC !IF/ID.NPC ; ID/EX.IR !IF/ID.IR;
ID/EX.Imm ! (IF/ID. IR 16) 16 ## IF/ID. IR 16..31;

ALU Load or Store Branch

EX

EX/MEM.IR = ID/EX.IR;
EX/MEM. ALUOutput !
ID/EX.A func ID/EX.B;
Or
EX/MEM.ALUOutput !
ID/EX.A op ID/EX.Imm;
EX/MEM.cond ! 0;

EX/MEM.IR ! ID/EX.IR;
EX/MEM.ALUOutput !
ID/EX.A + ID/EX.Imm;

EX/MEM.cond ! 0;
EX/MEM.B !ID/EX.B;

EX/MEM.ALUOutput !
ID/EX.NPC + ID/EX.Imm;

EX/MEM.cond !
(ID/EX.A op 0);

MEM

MEM/WB.IR !EX/MEM.IR;
MEM/WB.ALUOutput !
EX/MEM.ALUOutput;

MEM/WB.IR ! EX/MEM.IR;
MEM/WB.LMD !
Mem[EX/MEM.ALUOutput] ;
Or
Mem[EX/MEM.ALUOutput] !
EX/MEM.B ;

WB

Regs[MEM/WB. IR 16..20] !
EM/WB.ALUOutput;
Or
Regs[MEM/WB. IR 11..15] !
MEM/WB.ALUOutput ;

For load only:
Regs[MEM/WB. IR 11..15] !
MEM/WB.LMD;

•! Cases that affect instruction execution
semantics and thus need to be detected and corrected

•! Hazards types
–! Structural hazard: attempt to use a resource two different

ways at same time
•! Single memory for instruction and data

–! Data hazard: attempt to use item before it is ready
•! Instruction depends on result of prior instruction still in the

pipeline
–! Control hazard: attempt to make a decision before condition is

evaluated
•! branch instructions

•! Hazards can always be resolved by waiting

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Slide: David Culler

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

DMem

Structural Hazard
Slide: David Culler

1.! Wait
–! Must detect the hazard

•! Easier with uniform ISA
–! Must have mechanism to stall

•! Easier with uniform pipeline organization

2.! Throw more hardware at the problem
–! Use instruction & data cache rather than

direct access to memory

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Reg A
LU

DMem Ifetch Reg

Bubble Bubble Bubble Bubble Bubble

Slide: David Culler

Pipelining Speedup =
Average instruction time unpipelined
Average instruction time pipelined

=
CPI unpipelined
CPI pipelined

"
Clock cycle unpipelined
Clock cycle pipelined

Speedup =
CPI unpipelined

1 + Pipeline stall cycles per instruction
"

Clock cycle unpipelined
Clock cycle pipelined

CPI pipelined = Ideal CPI+ Pipeline stall cycles per instruction
= 1+ Pipeline stall cycles per instruction

Ideal CPI pipelined = 1

Speedup =
Pipeline depth

1 + Pipeline stall cycles per instruction

Assuming all pipeline stages are balanced

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU

DMem Ifetch Reg

Time (clock cycles)

IF ID/RF EX MEM WB

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Slide: David Culler

Reg A
LU

DMem Ifetch Reg

I: add r1,r2,r3
J: sub r4,r1,r3

•! Read After Write (RAW)
InstrJ tries to read operand before InstrI writes
it

•! Caused by a “Data Dependence” (in compiler

nomenclature). This hazard results from an
actual need for communication.

Slide: David Culler

•! Write After Read (WAR)
InstrJ writes operand before InstrI reads it

•! Called an “anti-dependence” in compilers.
–! This results from reuse of the name “r1”.

•! Can’t happen in MIPS 5 stage pipeline because:
–! All instructions take 5 stages, and
–! Reads are always in stage 2, and
–! Writes are always in stage 5

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Slide: David Culler

•! Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

•! Called an “output dependence” in compilers
–! This also results from the reuse of name “r1”.

•! Can’t happen in MIPS 5 stage pipeline:
–! All instructions take 5 stages, and
–! Writes are always in stage 5

•! Do see WAR and WAW in more complicated pipes

I: mul r1,r4,r3
J: add r1,r2,r3
K: sub r6,r1,r7

Slide: David Culler

Time (clock cycles)

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Slide: David Culler

M
EM

/W
R

ID
/EX

EX
/M

EM

Data
Memory

A
LU

m
ux

m
ux

Registers

NextPC

Immediate

m
ux

Slide: David Culler

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Slide: David Culler

•! Adding hardware? How? Where?
•! Detection?
•! Compilation techniques?

•! What is the cost of load delays?

Slide: David Culler

Time (clock cycles)

or r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
LU

DMem Ifetch Reg

Ifetch A
LU

DMem Bubble Reg

Reg Ifetch A
LU

DMem Reg Bubble

Ifetch A
LU

DMem Reg Bubble Reg

How is this different from the instruction issue stall?
Slide: David Culler

Try producing fast code for
 a = b + c;
 d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

 LW Rb,b
 LW Rc,c
 ADD Ra,Rb,Rc
 SW a,Ra
 LW Re,e
 LW Rf,f
 SUB Rd,Re,Rf
 SW d,Rd

Fast code:
 LW Rb,b
 LW Rc,c
 LW Re,e
 ADD Ra,Rb,Rc
 LW Rf,f
 SW a,Ra
 SUB Rd,Re,Rf
 SW d,Rd

Slide: David Culler

•! What is exposed about this organizational hazard in the
instruction set?

•! k cycle delay?
–! bad, CPI is not part of ISA

•! k instruction slot delay
–! load should not be followed by use of the value in the next k

instructions
•! Nothing, but code can reduce run-time delays
•! MIPS did the transformation in the assembler

Slide: David Culler

•! Cases that affect instruction execution
semantics and thus need to be detected and corrected

•! Hazards types
–! Structural hazard: attempt to use a resource two different

ways at same time
•! Single memory for instruction and data

–! Data hazard: attempt to use item before it is ready
•! Instruction depends on result of prior instruction still in the

pipeline
–! Control hazard: attempt to make a decision before condition is

evaluated
•! branch instructions

•! Hazards can always be resolved by waiting

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Slide: David Culler

•! If 30% branch, 3-cycle stall significant!
•! Two part solution:

–!Determine branch taken or not sooner, AND
–!Compute taken branch address earlier

•! MIPS branch tests if register = 0 or " 0
•! MIPS Solution:

–!Move Zero test to ID/RF stage
–!Adder to calculate new PC in ID/RF stage
–!1 clock cycle penalty for branch versus 3

Slide: David Culler

Add

Zero?

Figure: Dave Patterson

1.! Stall until branch direction is clear
2.! Predict Branch Not Taken

–! Execute successor instructions in sequence
–! “Squash” instructions in pipeline if branch taken
–! Advantage of late pipeline state update
–! 47% MIPS branches not taken on average
–! PC+4 already calculated, so use it to get next instruction

3.! Predict Branch Taken
–! 53% MIPS branches taken on average
–! But haven’t calculated branch target address in MIPS

•! MIPS still incurs 1 cycle branch penalty
•! Other machines: branch target known before outcome

Slide: David Culler

4.! Delayed Branch
–! Define branch to take place AFTER a following

instruction
branch instruction

 sequential successor1
 sequential successor2

 sequential successorn

........
 branch target if taken

–! 1 slot delay allows proper decision and branch
target address in 5 stage pipeline

–! MIPS uses this

Branch delay of length n

Slide: David Culler

•! Where to get branch delay slot instructions?
–! Before branch instruction
–! From the target address

•! only valuable when branch taken
–! From fall through

•! only valuable when branch not taken
–! Canceling branches allow more slots to be filled

•! Compiler effectiveness for single delay slot:
–! Fills about 60% of branch delay slots
–! About 80% of instructions executed in branch delay slots useful in

computation
–! 48% (60% x 80%) of slots usefully filled

•! Delayed Branch downside: 7-8 stage pipelines, multiple
instructions issued per clock (superscalar)

Slide: David Culler

Best scenario Good for loops Good taken strategy

R4 must be
temp reg.

Scheduling
Strategy Requirements Improves performance

when?
(a) From before Branch must not depend on the

rescheduled instructions
Always

(b) From target Must be OK to execute rescheduled
instructions if branch is not taken.
May need to duplicate instructions.

When branch is taken. May
enlarge programs if
instructions are duplicated.

(c) From fall
 through

Must be okay to execute instructions
if branch is taken.

When branch is not taken.

•! Limitation on delayed-branch scheduling arise from:
–! Restrictions on instructions scheduled into the delay slots
–! Ability to predict at compile-time whether a branch is likely to be

taken
•! May have to fill with a no-op instruction

–! Average 30% wasted
•! Additional PC is needed to allow safe operation in case of

interrupts (more on this later)

Assume:
14% Conditional & Unconditional
65% Taken; 52% Delay slots not usefully filled

Pipeline speedup = Pipeline depth
1 + Pipeline stall CPI

= Pipeline depth
1 + Branch frequency"Branch penalty

Scheduling Scheme Branch
Penalty

CPI Pipeline
Speedup

Speedup
vs stall

Stall pipeline 3.00 1.42 3.52 1.00
Predict taken 1.00 1.14 4.39 1.25
Predict not taken 1.00 1.09 4.58 1.30
Delayed branch 0.52 1.07 4.66 1.32

Slide: David Culler

In
st

ru
ct

io
ns

 b
et

w
ee

n
m

is
pr

ed
ic

tio
n

Predict taken

Profile based

•! Examination of program behavior
–! Assume branch is usually taken based on statistics but misprediction

rate still 9%-59%
•! Predict on branch direction forward/backward based on statistics

and code generation convention
–! Profile information from earlier program runs

