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•! To command a computer's hardware, you must speak 
its language 
–! Instructions: the “words” of a machine's language 
–! Instruction set: its “vocabulary 

•! Goals: 
–! Introduce design alternatives  
–! Present a taxonomy of ISA alternatives 

•! + some qualitative assessment of pros and cons 
–! Present and analyze some instruction set measurements 
–! Address the issue of languages and compilers and their 

bearing on instruction set architecture 
–! Show some example ISA’s 



•! A good interface: 
–! Lasts through many implementations (portability, 

compatibility) 
–! Is used in many different ways (generality) 
–! Provides convenient  functionality to higher levels 
–! Permits an efficient implementation at lower levels 

•! Design decisions must take into account: 
–! Technology 
–! Machine organization 
–! Programming languages 
–! Compiler technology 
–! Operating systems 
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•! Terms 
–!Result = Operand <operation> Operand 

•! Stack 
–!Operate on top stack elements, push result 

back on stack 
•! Memory-Memory 

–!Operands (and possibly also result) in 
memory 



•! Accumulator Architecture 
–! Common in early stored-program computers when hardware 

was expensive  
–! Machine has only one register (accumulator) involved in all 

math & logic operations 
–! Accumulator = Accumulator op Memory 

•! Extended Accumulator Architecture (8086) 
–! Dedicated registers for specific operations, e.g stack and 

array index registers, added 
•! General-Purpose Register Architecture (MIPS) 

–! Register flexibility 
–! Can further divide these into: 

•! Register-memory: allows for one operand to be in memory 
•! Register-register (load-store): all operands in registers 



•! High-Level-Language Architecture 
–! In the 1960s, systems software was rarely written in high-level 

languages 
•! virtually every commercial operating system before Unix was 

written in assembly 
–! Some people blamed the code density on the instruction set 

rather than the programming language 
–! A machine design philosophy advocated making the hardware 

more like high-level languages  



•! Stack 
•! Memory-Memory 
•! Accumulator Architecture 
•! Extended Accumulator Architecture 
•! General-Purpose Register Architecture 

Machine # general-purpose
registers

Architecture style Year

Motorola 6800 2 Accumulator 1974
DEC VAX 16 Register-memory, memory-memory 1977
Intel 8086 1 Extended accumulator 1978
Motorola 68000 16 Register-memory 1980
Intel 80386 32 Register-memory 1985
PowerPC 32 Load-store 1992
DEC Alpha 32 Load-store 1992



•! Reduced Instruction Set Architecture 
–! With the recent development in compiler technology and 

expanded memory sizes less programmers are using 
assembly level coding 

–! Drives ISA to favor benefit for compilers over ease of manual 
programming 

•! RISC architecture favors simplified hardware design 
over rich instruction set 
–! Rely on compilers to perform complex operations 

•! Virtually all new architecture since 1982 follows the 
RISC philosophy: 
–! fixed instruction lengths, load-store operations, and limited 

addressing mode  



•! Scarce memory or limited transmit time (JVM) 
•! Variable-length instructions (Intel 80x86) 

–! Match instruction length to operand specification 
–! Minimize code size 

•! Stack machines abandon registers altogether 
–! Stack machines simplify compilers 
–! Lend themselves to a compact instruction encoding 
–! BUT limit compiler optimization  



Single Accumulator (EDSAC 1950) 

Accumulator + Index Registers 
(Manchester Mark I, IBM 700 series 1953) 

Separation of Programming Model 
          from Implementation 

High-level Language Based Concept of a Family 
(B5000 1963) (IBM 360 1964) 

General Purpose Register Machines 

Complex Instruction Sets Load/Store Architecture 

RISC 

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76) 

(MIPS,SPARC,IBM RS6000, . . .1987) 
Slide: Dave Patterson 



# memory 
addresses 

Max. number 
of operands Examples 

0 3 SPARC, MIPS, PowerPC, ALPHA 
1 2 Intel 60X86, Motorola 68000 
2 2 VAX (also has 3 operands format) 
3 3 VAX (also has 2 operands format) 

 

Effect of the number of memory operands: 
Type Advantages Disadvantages

Reg-Reg (0,3) - Fixed length instruction encoding
- Simple code generation model
- Similar execution time (pipeline)

- Higher instruction count
- Some instructions are short leading to
  wasteful bit encoding

Reg-Mem (1,2) - Direct access without loading
- Easy instruction encoding

- Can restrict # register available for use
- Clocks per instr. varies by operand type
- Source operands are destroyed

Mem-Mem (3,3) - No temporary register usage
- Compact code

- Less potential for compiler optimization
- Can create memory access bottleneck
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Object 
addressed 

Aligned at 
byte offsets 

Misaligned at 
byte offsets 

Byte 1,2,3,4,5,6,7 Never 
Half word 0,2,4,6 1,3,5,7 
Word 0,4 1,2,3,5,6,7 
Double word 0 1,2,3,4,5,6,7 

 

•! The address of a word matches the byte address of one of its 4 
bytes 

•! The addresses of sequential words differ by 4 (word size in byte)  
•! Words' addresses are multiple of 4 (alignment restriction) 

–! Misalignment (if allowed) complicates memory access and causes 
programs to run slower 



•! Given N bytes, which is the most significant, which is 
the least significant? 
–! “Little Endian” 

•! Leftmost / least significant byte = word address 
•! Intel (among others) 

–! “Big Endian” 
•! Leftmost / most significant byte = word address 
•! Motorola, TCP/IP (among others) 

•! Byte ordering can be as problem when exchanging 
data among different machines 

•! Can also affect array index calculation or any other 
operation that treat the same data a both byte and 
word. 



•! How to specify the location of an operand 
(effective address) 

•! Addressing modes have the ability to:  
–!  Significantly reduce instruction counts 
–!  Increase the average CPI 
–!  Increase the complexity of building a machine 

•! VAX machine is used for benchmark data 
since it supports  wide range of memory 
addressing modes 

•! Can classify based on: 
–! source of the data (register, immediate or memory) 
–! the address calculation (direct, indirect, indexed) 



Mode Example  Meaning When used 
Register ADD R4, R3 Regs[R4] = Regs[R4] + 

Regs[R3] 
When a value is in a register 

Immediate ADD R4, #3 Regs[R4] = Regs[R4] + 3 For constants 
Register indirect ADD R4, (R1) Regs[R4] = Regs[R4] + 

Mem[Regs[R1] ] 
Accessing using a pointer or a 
computed address 

Direct or 
absolute 

ADD R4, (1001) Regs[R4] = Regs[R4] + 
Mem[ 1001 ] 

Sometimes useful for accessing 
static data; address constant 
may need to be large 

Displacement ADD R4, 100 (R1) Regs[R4] = Regs[R4] + 
Mem[ 100 + Regs[R1] ] 

Accessing local variables 

Indexed ADD R4, (R1 + R2) Regs[R4] = Regs[R4] + 
Mem[Regs[R1] + 
Regs[R2]] 

Sometimes useful in array 
addressing: R1 = base of the 
array: R2 = index amount 

Autoincrement ADD R4, (R2) +  Regs[R4] = Regs[R4] + 
Mem[Regs[R2] ] 
 
Regs[R2] = Regs[R2] + d 

Useful for stepping through 
arrays within a loop. R2 points to 
start of the array; each reference 
increments R2 by d. 

Auto decrement ADD R4, -(R2) Regs[R2] = Regs[R2] – d 
 
Regs[R4] = Regs[R4] + 
Mem[Regs[R2] ] 

Same use as autoincrement. 
Autodecrement/increment can 
also act as push/pop to 
implement a stack 

Scaled ADD R4, 100 (R2) [R3] Regs[R4] = Regs[R4] + 
Mem[100 + Regs[R2] + 
Regs[R3] * d] 

Used to index arrays.  

 



Focus on immediate and 
displacement modes since 
they are used the most 

Based on SPEC89 on VAX 
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Number of bits needed for a displacement value in SPEC2000 benchmark 

Data is based on SPEC2000 on Alpha 
(only 16 bit displacement allowed) 

•! The range of displacement supported 
affects the length of the instruction 



 Statistics are based on SPEC2000 benchmark on Alpha 

•! Immediate values for what operations? 



Measurements were taken on Alpha 
(only 16 bit immediate value allowed) 
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Number of bits needed for a immediate values in SPEC2000 benchmark 

•! Range affects instruction length 
–! Similar measurements on the VAX (with 32-bit immediate 

values) showed that 20-25% of immediate values were longer 
than 16-bits 



•! DSP offers special addressing modes to 
better serve popular algorithms 

•! Special features requires either hand 
coding or a compiler that uses such 
features 



Fast Fourier Transform 

0 (0002) ! 0 (0002)  

1 (0012) ! 4 (1002)  

2 (0102) ! 2 (0102)  

3 (0112) ! 6 (1102)  

4 (1002) ! 1 (0012)  

5 (1012) ! 5 (1012)  

6 (1102) ! 3 (0112)  

7 (1112) ! 7 (1112) 

•! Modulo addressing: 
–! Since DSP deals with 

continuous data streams, 
circular buffers common 

–! Circular or modulo 
addressing: automatic 
increment and decrement / 
reset pointer at end of buffer 

•! Reverse addressing: 
–! Address is the reverse order 

of the current address 
–! Expedites access / otherwise 

require a number of logical 
instructions or extra memory 
accesses 
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Example:  
Translation of a segment of a C program to MIPS assembly instructions: 

C:          f = (g + h) - (i + j) 

(pseudo)MIPS: 
add  t0, g, h   # temp. variable t0 contains "g + h" 
add  t1, i, j   # temp. variable t1 contains "i + j" 
sub  f, t0, t1   # f = t0 - t1 = (g + h) - (i + j) 

“There must certainly be instructions for performing the   
 fundamental arithmetic operations.” 

   Burkes, Goldstine and Von Neumann, 1947 

MIPS assembler allows only one instruction/line and ignore 
comments following # until end of line 



Operator type Examples 
Arithmetic and logical Integer arithmetic and logical operations: add, and, subtract , or 
Data Transfer Loads-stores (move instructions on machines with memory addressing) 
Control Branch, jump, procedure call and return, trap 
System Operating system call, Virtual memory management instructions 
Floating point Floating point instructions: add, multiply 
Decimal Decimal add, decimal multiply, decimal to character conversion 
String String move, string compare, string search 
Graphics Pixel operations, compression/decompression operations 

 

•! Arithmetic, logical, data transfer and control are almost standard 
categories for all machines 

•! System instructions are required for multi-programming 
environment although support for system functions varies  

•! Others can be primitives (e.g. decimal and string on IBM 360 and 
VAX), provided by a co-processor, or synthesized by compiler. 



•! Partitioned Add: 
–! Partition a single register into multiple data 

elements (e.g. 4 16-bit words in 1 64-bit register) 
–! Perform the same operation independently on each 
–! Increases ALU throughput for multimedia 

applications 
•! Paired single operations 

–! Perform multiple independent narrow operations on 
one wide ALU (e.g. 2 32-bit float ops) 

–! Handy in dealing with vertices and coordinates 
•! Multiply and accumulate 

–! Very handy for calculating dot products of vectors 
(signal processing) and matrix multiplication 



Rank 80x86 Instruction Integer Average  
(% total executed) 

1 Load 22% 
2 Conditional branch 20% 
3 Compare 16% 
4 Store 12% 
5 Add 8% 
6 And 6% 
7 Sub 5% 
8 Move register-register 4% 
9 Call 1% 

10 Return 1% 
Total 96% 

 
Make the common case fast by focusing on these operations 

•! The most widely executed instructions are the 
simple operations of an instruction set 

•! Average usage in SPECint92 on Intel 80x86: 



Data is based on SPEC2000 on Alpha 

•! Jump: unconditional change in the control flow  
•! Branch: conditional change in the control flow  
•! Procedure calls and returns 



•! PC-relative addressing 
–! Good for short position-independent forward & 

backward jumps  
•! Register indirect addressing 

–! Good for dynamic libraries, virtual functions & 
packed case statements 

Data is based SPEC2000 on Alpha 



•! Operand type encoded in instruction opcode 
–! The type of an operand effectively gives its size 

•! Common types include character, half word and word 
size integer, single- and double-precision floating point 
–! Characters are almost always in ASCII, though 16-bit Unicode 

(for international characters) is gaining popularity 
–! Integers in 2’s complement  
–! Floating point in IEEE 754 



•! Business Applications 
–! Binary Coded Decimal 

(BCD) 
•! Exactly represents all 

decimal fractions (binary 
doesn’t!) 

•! DSP 
–! Fixed point 

•! Good for limited range 
numbers: more mantissa bits 

–! Block floating point 
•! Single shared exponent for 

multiple numbers 
•! Graphics 

–! 4-element vector operations 
(RGBA or XYZW) 
•! 8-bit, 16-bit or single-

precision floating point 



•! Double-word: double-precision floating point + addresses in 64-bit 
machines 

•! Words: most integer operations + addresses in 32-bit machines 
•! For the mix in SPEC, word and double-word data types 

dominates 

Frequency of reference by size  
based on SPEC2000 on Alpha 



•! All data in computer systems is represented in binary 
•! Instructions are no exception 
•! The program that translates the human-readable code 

to numeric form is called an Assembler 
•! Hence machine-language or assembly-language 

Example: 

  Assembly:    ADD $t0, $s1, $s2 

 Note: by default MIPS $t0..$t7 map to reg. 8..15, $s0..$s7 map to reg. 16-23 

$t0, $s1, $s2 

0x0 0x11 0x12 0x8 0x020 

$s1 $s2 $t0 ADD 

000000 10001 10010 01000 00000100000 

M/C language (hex): 

M/C language (hex by field): 

M/C language (binary): 

0x02324020 



•! Affects the size of the compiled program 
•! Also complexity of the CPU implementation 
•! Operation in one field called opcode 
•! Addressing mode in opcode or separate field 
•! Must balance: 

–! Desire to support as many registers and addressing modes as 
possible 

–! Effect of operand specification on the size of the instruction 
(and program) 

–! Desire to simplify instruction fetching and decoding during 
execution 

•! Fixed size instruction encoding simplifies CPU design 
but limits addressing choices 





opcodes
 000 001 010 011 100 101 110 111

000 R-type  j jal beq bne blez bgtz
001 addi addiu slti sltiu andi ori xori  
010         
011 llo lhi trap      
100 lb lh  lw lbu lhu   
101 sb sh  sw     
110         
111         

funct codes
 000 001 010 011 100 101 110 111

000 sll  srl sra sllv  srlv srav
001 jr jalr       
010 mfhi mthi mflo mtlo     
011 mult multu div divu     
100 add addu sub subu and or xor nor
101   slt sltu     
110         
111         



•! Data 
–! IEEE-like floating point 
–!4-element vectors 
•! Most instructions perform operation on all four 

•! Addressing 
–!No addresses 
–!ATTRIB, PARAM, TEMP, OUTPUT 
–!Limited arrays 
–!Element selection (read & write) 
•! C.xyw, C.rgba 



•! Instructions: 
Instruction Operation Instruction Operation 

ABS r,s r = abs(s) MIN r,s1,s2 r = min(s1,s2) 
ADD r,s1,s2 r = s1+s2 MOV r,s1 r = s1 
CMP r,c,s1,s2 r = c<0 ? s1 : s2 MUL r,s1,s2 r = s1*s2 
COS r,s r = cos(s) POW r,s1,s2 r ! s1s2 

DP3 r,s1,s2 r = s1.xyz • s2.xyz RCP r,s1 r = 1/s1 
DP4 r,s1,s2 r = s1 • s2 RSQ r,s1 r = 1/sqrt(s1) 
DPH r,s1,s2 r = s1.xyz1 • s2 SCS r,s1 r = (cos(s),sin(s),?,?) 
DST r,s1,s2 r = (1,s1.y*s2.y,s1.z,s2.w) SGE r,s1,s2 r = s1"s2 ? 1 : 0 
EX2 r,s r ! 2s SIN r,s r = sin(s) 
FLR r,s r = floor(s) SLT r,s1,s2 r = s1<s2 ? 1 : 0 
FRC r,s r = s - floor(s) SUB r,s1,s2 r = s1-s2 
KIL s if (s<0) discard SWZ r,s,cx,cy,cz,cw r = swizzle(s) 
LG2 r,s r ! log2(s) TEX r,s,name,nD r = texture(s) 
LIT r,s r = lighting computation TXB r,s,name,nD r = textureLOD(s) 
LRP r,t,s1,s2 r = t*s1 + (1-t)*s2 TXP r,s,name,nD r = texture(s/s.w) 
MAD r,s1,s2,s3 r = s1*s2 + s3 XPD r,s1,s2 r = s1 s2 
MAX r,s1,s2 r = max(s1,s2)   
 



•! Notable: 
–!Many special-purpose instructions 
–!No binary encoding, interface is text form 
•! No ISA limits on future expansion 
•! No ISA limits on registers 
•! No ISA limits on immediate values 

–!Originally no branching! (exists now) 


