
Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides
Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

•! To command a computer's hardware, you must speak
its language
–! Instructions: the “words” of a machine's language
–! Instruction set: its “vocabulary

•! Goals:
–! Introduce design alternatives
–! Present a taxonomy of ISA alternatives

•! + some qualitative assessment of pros and cons
–! Present and analyze some instruction set measurements
–! Address the issue of languages and compilers and their

bearing on instruction set architecture
–! Show some example ISA’s

•! A good interface:
–! Lasts through many implementations (portability,

compatibility)
–! Is used in many different ways (generality)
–! Provides convenient functionality to higher levels
–! Permits an efficient implementation at lower levels

•! Design decisions must take into account:
–! Technology
–! Machine organization
–! Programming languages
–! Compiler technology
–! Operating systems

Interface

imp 1

imp 2

imp 3

use

use

use

Tim
e

Slide: Dave Patterson

•! Terms
–!Result = Operand <operation> Operand

•! Stack
–!Operate on top stack elements, push result

back on stack
•! Memory-Memory

–!Operands (and possibly also result) in
memory

•! Accumulator Architecture
–! Common in early stored-program computers when hardware

was expensive
–! Machine has only one register (accumulator) involved in all

math & logic operations
–! Accumulator = Accumulator op Memory

•! Extended Accumulator Architecture (8086)
–! Dedicated registers for specific operations, e.g stack and

array index registers, added
•! General-Purpose Register Architecture (MIPS)

–! Register flexibility
–! Can further divide these into:

•! Register-memory: allows for one operand to be in memory
•! Register-register (load-store): all operands in registers

•! High-Level-Language Architecture
–! In the 1960s, systems software was rarely written in high-level

languages
•! virtually every commercial operating system before Unix was

written in assembly
–! Some people blamed the code density on the instruction set

rather than the programming language
–! A machine design philosophy advocated making the hardware

more like high-level languages

•! Stack
•! Memory-Memory
•! Accumulator Architecture
•! Extended Accumulator Architecture
•! General-Purpose Register Architecture

Machine # general-purpose
registers

Architecture style Year

Motorola 6800 2 Accumulator 1974
DEC VAX 16 Register-memory, memory-memory 1977
Intel 8086 1 Extended accumulator 1978
Motorola 68000 16 Register-memory 1980
Intel 80386 32 Register-memory 1985
PowerPC 32 Load-store 1992
DEC Alpha 32 Load-store 1992

•! Reduced Instruction Set Architecture
–! With the recent development in compiler technology and

expanded memory sizes less programmers are using
assembly level coding

–! Drives ISA to favor benefit for compilers over ease of manual
programming

•! RISC architecture favors simplified hardware design
over rich instruction set
–! Rely on compilers to perform complex operations

•! Virtually all new architecture since 1982 follows the
RISC philosophy:
–! fixed instruction lengths, load-store operations, and limited

addressing mode

•! Scarce memory or limited transmit time (JVM)
•! Variable-length instructions (Intel 80x86)

–! Match instruction length to operand specification
–! Minimize code size

•! Stack machines abandon registers altogether
–! Stack machines simplify compilers
–! Lend themselves to a compact instruction encoding
–! BUT limit compiler optimization

Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
 from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(MIPS,SPARC,IBM RS6000, . . .1987)
Slide: Dave Patterson

memory
addresses

Max. number
of operands Examples

0 3 SPARC, MIPS, PowerPC, ALPHA
1 2 Intel 60X86, Motorola 68000
2 2 VAX (also has 3 operands format)
3 3 VAX (also has 2 operands format)

Effect of the number of memory operands:
Type Advantages Disadvantages

Reg-Reg (0,3) - Fixed length instruction encoding
- Simple code generation model
- Similar execution time (pipeline)

- Higher instruction count
- Some instructions are short leading to
 wasteful bit encoding

Reg-Mem (1,2) - Direct access without loading
- Easy instruction encoding

- Can restrict # register available for use
- Clocks per instr. varies by operand type
- Source operands are destroyed

Mem-Mem (3,3) - No temporary register usage
- Compact code

- Less potential for compiler optimization
- Can create memory access bottleneck

100

10

101

1

12

8

4

0

DataAddress

MemoryProcessor

Object
addressed

Aligned at
byte offsets

Misaligned at
byte offsets

Byte 1,2,3,4,5,6,7 Never
Half word 0,2,4,6 1,3,5,7
Word 0,4 1,2,3,5,6,7
Double word 0 1,2,3,4,5,6,7

•! The address of a word matches the byte address of one of its 4
bytes

•! The addresses of sequential words differ by 4 (word size in byte)
•! Words' addresses are multiple of 4 (alignment restriction)

–! Misalignment (if allowed) complicates memory access and causes
programs to run slower

•! Given N bytes, which is the most significant, which is
the least significant?
–! “Little Endian”

•! Leftmost / least significant byte = word address
•! Intel (among others)

–! “Big Endian”
•! Leftmost / most significant byte = word address
•! Motorola, TCP/IP (among others)

•! Byte ordering can be as problem when exchanging
data among different machines

•! Can also affect array index calculation or any other
operation that treat the same data a both byte and
word.

•! How to specify the location of an operand
(effective address)

•! Addressing modes have the ability to:
–! Significantly reduce instruction counts
–! Increase the average CPI
–! Increase the complexity of building a machine

•! VAX machine is used for benchmark data
since it supports wide range of memory
addressing modes

•! Can classify based on:
–! source of the data (register, immediate or memory)
–! the address calculation (direct, indirect, indexed)

Mode Example Meaning When used
Register ADD R4, R3 Regs[R4] = Regs[R4] +

Regs[R3]
When a value is in a register

Immediate ADD R4, #3 Regs[R4] = Regs[R4] + 3 For constants
Register indirect ADD R4, (R1) Regs[R4] = Regs[R4] +

Mem[Regs[R1]]
Accessing using a pointer or a
computed address

Direct or
absolute

ADD R4, (1001) Regs[R4] = Regs[R4] +
Mem[1001]

Sometimes useful for accessing
static data; address constant
may need to be large

Displacement ADD R4, 100 (R1) Regs[R4] = Regs[R4] +
Mem[100 + Regs[R1]]

Accessing local variables

Indexed ADD R4, (R1 + R2) Regs[R4] = Regs[R4] +
Mem[Regs[R1] +
Regs[R2]]

Sometimes useful in array
addressing: R1 = base of the
array: R2 = index amount

Autoincrement ADD R4, (R2) + Regs[R4] = Regs[R4] +
Mem[Regs[R2]]

Regs[R2] = Regs[R2] + d

Useful for stepping through
arrays within a loop. R2 points to
start of the array; each reference
increments R2 by d.

Auto decrement ADD R4, -(R2) Regs[R2] = Regs[R2] – d

Regs[R4] = Regs[R4] +
Mem[Regs[R2]]

Same use as autoincrement.
Autodecrement/increment can
also act as push/pop to
implement a stack

Scaled ADD R4, 100 (R2) [R3] Regs[R4] = Regs[R4] +
Mem[100 + Regs[R2] +
Regs[R3] * d]

Used to index arrays.

Focus on immediate and
displacement modes since
they are used the most

Based on SPEC89 on VAX

Pe
rc

en
ta

ge
 o

f d
is

pl
ac

em
en

t

Number of bits needed for a displacement value in SPEC2000 benchmark

Data is based on SPEC2000 on Alpha
(only 16 bit displacement allowed)

•! The range of displacement supported
affects the length of the instruction

 Statistics are based on SPEC2000 benchmark on Alpha

•! Immediate values for what operations?

Measurements were taken on Alpha
(only 16 bit immediate value allowed)

Pe
rc

en
ta

ge
 o

f I
m

m
ed

ia
te

 V
al

ue
s

Number of bits needed for a immediate values in SPEC2000 benchmark

•! Range affects instruction length
–! Similar measurements on the VAX (with 32-bit immediate

values) showed that 20-25% of immediate values were longer
than 16-bits

•! DSP offers special addressing modes to
better serve popular algorithms

•! Special features requires either hand
coding or a compiler that uses such
features

Fast Fourier Transform

0 (0002) ! 0 (0002)

1 (0012) ! 4 (1002)

2 (0102) ! 2 (0102)

3 (0112) ! 6 (1102)

4 (1002) ! 1 (0012)

5 (1012) ! 5 (1012)

6 (1102) ! 3 (0112)

7 (1112) ! 7 (1112)

•! Modulo addressing:
–! Since DSP deals with

continuous data streams,
circular buffers common

–! Circular or modulo
addressing: automatic
increment and decrement /
reset pointer at end of buffer

•! Reverse addressing:
–! Address is the reverse order

of the current address
–! Expedites access / otherwise

require a number of logical
instructions or extra memory
accesses

Byte Halfword Word

Registers

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+

Example:
Translation of a segment of a C program to MIPS assembly instructions:

C: f = (g + h) - (i + j)

(pseudo)MIPS:
add t0, g, h # temp. variable t0 contains "g + h"
add t1, i, j # temp. variable t1 contains "i + j"
sub f, t0, t1 # f = t0 - t1 = (g + h) - (i + j)

“There must certainly be instructions for performing the
 fundamental arithmetic operations.”

 Burkes, Goldstine and Von Neumann, 1947

MIPS assembler allows only one instruction/line and ignore
comments following # until end of line

Operator type Examples
Arithmetic and logical Integer arithmetic and logical operations: add, and, subtract , or
Data Transfer Loads-stores (move instructions on machines with memory addressing)
Control Branch, jump, procedure call and return, trap
System Operating system call, Virtual memory management instructions
Floating point Floating point instructions: add, multiply
Decimal Decimal add, decimal multiply, decimal to character conversion
String String move, string compare, string search
Graphics Pixel operations, compression/decompression operations

•! Arithmetic, logical, data transfer and control are almost standard
categories for all machines

•! System instructions are required for multi-programming
environment although support for system functions varies

•! Others can be primitives (e.g. decimal and string on IBM 360 and
VAX), provided by a co-processor, or synthesized by compiler.

•! Partitioned Add:
–! Partition a single register into multiple data

elements (e.g. 4 16-bit words in 1 64-bit register)
–! Perform the same operation independently on each
–! Increases ALU throughput for multimedia

applications
•! Paired single operations

–! Perform multiple independent narrow operations on
one wide ALU (e.g. 2 32-bit float ops)

–! Handy in dealing with vertices and coordinates
•! Multiply and accumulate

–! Very handy for calculating dot products of vectors
(signal processing) and matrix multiplication

Rank 80x86 Instruction Integer Average
(% total executed)

1 Load 22%
2 Conditional branch 20%
3 Compare 16%
4 Store 12%
5 Add 8%
6 And 6%
7 Sub 5%
8 Move register-register 4%
9 Call 1%

10 Return 1%
Total 96%

Make the common case fast by focusing on these operations

•! The most widely executed instructions are the
simple operations of an instruction set

•! Average usage in SPECint92 on Intel 80x86:

Data is based on SPEC2000 on Alpha

•! Jump: unconditional change in the control flow
•! Branch: conditional change in the control flow
•! Procedure calls and returns

•! PC-relative addressing
–! Good for short position-independent forward &

backward jumps
•! Register indirect addressing

–! Good for dynamic libraries, virtual functions &
packed case statements

Data is based SPEC2000 on Alpha

•! Operand type encoded in instruction opcode
–! The type of an operand effectively gives its size

•! Common types include character, half word and word
size integer, single- and double-precision floating point
–! Characters are almost always in ASCII, though 16-bit Unicode

(for international characters) is gaining popularity
–! Integers in 2’s complement
–! Floating point in IEEE 754

•! Business Applications
–! Binary Coded Decimal

(BCD)
•! Exactly represents all

decimal fractions (binary
doesn’t!)

•! DSP
–! Fixed point

•! Good for limited range
numbers: more mantissa bits

–! Block floating point
•! Single shared exponent for

multiple numbers
•! Graphics

–! 4-element vector operations
(RGBA or XYZW)
•! 8-bit, 16-bit or single-

precision floating point

•! Double-word: double-precision floating point + addresses in 64-bit
machines

•! Words: most integer operations + addresses in 32-bit machines
•! For the mix in SPEC, word and double-word data types

dominates

Frequency of reference by size
based on SPEC2000 on Alpha

•! All data in computer systems is represented in binary
•! Instructions are no exception
•! The program that translates the human-readable code

to numeric form is called an Assembler
•! Hence machine-language or assembly-language

Example:

 Assembly: ADD $t0, $s1, $s2

 Note: by default MIPS $t0..$t7 map to reg. 8..15, $s0..$s7 map to reg. 16-23

$t0, $s1, $s2

0x0 0x11 0x12 0x8 0x020

$s1 $s2 $t0 ADD

000000 10001 10010 01000 00000100000

M/C language (hex):

M/C language (hex by field):

M/C language (binary):

0x02324020

•! Affects the size of the compiled program
•! Also complexity of the CPU implementation
•! Operation in one field called opcode
•! Addressing mode in opcode or separate field
•! Must balance:

–! Desire to support as many registers and addressing modes as
possible

–! Effect of operand specification on the size of the instruction
(and program)

–! Desire to simplify instruction fetching and decoding during
execution

•! Fixed size instruction encoding simplifies CPU design
but limits addressing choices

opcodes
 000 001 010 011 100 101 110 111

000 R-type j jal beq bne blez bgtz
001 addi addiu slti sltiu andi ori xori
010
011 llo lhi trap
100 lb lh lw lbu lhu
101 sb sh sw
110
111

funct codes
 000 001 010 011 100 101 110 111

000 sll srl sra sllv srlv srav
001 jr jalr
010 mfhi mthi mflo mtlo
011 mult multu div divu
100 add addu sub subu and or xor nor
101 slt sltu
110
111

•! Data
–! IEEE-like floating point
–!4-element vectors
•! Most instructions perform operation on all four

•! Addressing
–!No addresses
–!ATTRIB, PARAM, TEMP, OUTPUT
–!Limited arrays
–!Element selection (read & write)
•! C.xyw, C.rgba

•! Instructions:
Instruction Operation Instruction Operation

ABS r,s r = abs(s) MIN r,s1,s2 r = min(s1,s2)
ADD r,s1,s2 r = s1+s2 MOV r,s1 r = s1
CMP r,c,s1,s2 r = c<0 ? s1 : s2 MUL r,s1,s2 r = s1*s2
COS r,s r = cos(s) POW r,s1,s2 r ! s1s2

DP3 r,s1,s2 r = s1.xyz • s2.xyz RCP r,s1 r = 1/s1
DP4 r,s1,s2 r = s1 • s2 RSQ r,s1 r = 1/sqrt(s1)
DPH r,s1,s2 r = s1.xyz1 • s2 SCS r,s1 r = (cos(s),sin(s),?,?)
DST r,s1,s2 r = (1,s1.y*s2.y,s1.z,s2.w) SGE r,s1,s2 r = s1"s2 ? 1 : 0
EX2 r,s r ! 2s SIN r,s r = sin(s)
FLR r,s r = floor(s) SLT r,s1,s2 r = s1<s2 ? 1 : 0
FRC r,s r = s - floor(s) SUB r,s1,s2 r = s1-s2
KIL s if (s<0) discard SWZ r,s,cx,cy,cz,cw r = swizzle(s)
LG2 r,s r ! log2(s) TEX r,s,name,nD r = texture(s)
LIT r,s r = lighting computation TXB r,s,name,nD r = textureLOD(s)
LRP r,t,s1,s2 r = t*s1 + (1-t)*s2 TXP r,s,name,nD r = texture(s/s.w)
MAD r,s1,s2,s3 r = s1*s2 + s3 XPD r,s1,s2 r = s1 s2
MAX r,s1,s2 r = max(s1,s2)

•! Notable:
–!Many special-purpose instructions
–!No binary encoding, interface is text form
•! No ISA limits on future expansion
•! No ISA limits on registers
•! No ISA limits on immediate values

–!Originally no branching! (exists now)

