
Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides
Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

Performance =
1

Execution time

•! Maximizing performance means
minimizing response (execution) time

 rate Clock
program a for cycles clock CPU

time cycle Clockprogram a for cycles clock CPUprogram a for time execution CPU

=

!=

•! Users and designers measure performance
using different metrics
–! Users: quotable metrics (GHz)
–! Designers: program execution

•! Designer focuses on reducing the clock cycle
time and the number of cycles per program

•! Many techniques to decrease the number of
clock cycles also increase the clock cycle time
or the average number of cycles per
instruction (CPI)

A program runs in 10 seconds on a computer “A” with a 400 MHz clock.
We desire a faster computer “B” that could run the program in 6 seconds.
The designer has determined that a substantial increase in the clock speed is
possible, however it would cause computer “B” to require 1.2 times as many clock
cycles as computer “A”. What should be the clock rate of computer “B”?

(A) rate Clock
cycles clock CPU (A) time CPU =

10 seconds =
CPU clock cycles of program

400 " 106 cycles/second

CPU clock cycles of program = 10 seconds " 400 " 106 cycles/second

 = 4000 " 106 cycles

6 seconds =
1.2 " CPU clock cycles of program

clock rate (B)
=

1.2 " 4000 " 106 cycles
clock rate (B)

ondcycles/sec 10 800
second 6

cycles 10 4000 1.2 (B) rate clock 6
6

!=
!!

=

To get the clock rate of the faster computer, we use the same formula

 CPU time = Instruction count ! CPI ! Clock cycle time

Or

rate Clock
CPIcount nInstructiotime CPU !

=

cycle Clock
Seconds

nInstructio
 cycles Clock

Program
nsInstructiotime CPU !!=

Component of performance Units of measure
CPU execution time for a program Seconds for the program
Instruction count Instructions executed for the program
Clock cycles per instructions (CPI) Average number of clock cycles/instruction
Clock cycle time Seconds per clock cycle

•! CPU execution time can be measured by
running the program

•! The clock cycle is usually published by the
manufacture

•! Measuring the CPI and instruction count is not
trivial
–! Instruction counts can be measured by: software

profiling, using an architecture simulator, using
hardware counters on some architecture

–! The CPI depends on many factors including:
processor structure, memory system, the mix of
instruction types and the implementation of these
instructions

i
n

i
i CCPI != "

=1
cycles clock CPU

Where: Ci is the count of number of instructions of class i executed
 CPIi is the average number of cycles per instruction for that instruction class
 n is the number of different instruction classes

•! Designers sometimes uses the following
formula:

Suppose we have two implementation of the same instruction set architecture.
Machine “A” has a clock cycle time of 1 ns and a CPI of 2.0 for some program, and
machine “B” has a clock cycle time of 2 ns and a CPI of 1.2 for the same program.
Which machine is faster for this program and by how much?

Both machines execute the same instructions for the program. Assume the
number of instructions is “I”,
CPU clock cycles (A) = I ! 2.0 CPU clock cycles (B) = I ! 1.2

The CPU time required for each machine is as follows:

CPU time (A) = CPU clock cycles (A) ! Clock cycle time (A)
 = I ! 2.0 ! 1 ns = 2 ! I ns
CPU time (B) = CPU clock cycles (B) ! Clock cycle time (B)
 = I ! 1.2 ! 2 ns = 2.4 ! I ns
Therefore machine A will be faster by the following ratio:

21
ns 2
ns 2.4

(A) time CPU
(B) time CPU

(B) ePerformanc CPU
(A) ePerformanc CPU .=

!
!

==
I
I

A compiler designer is trying to decide between two code sequences for a
particular machine. The hardware designers have supplied the following facts:

For a particular high-level language statement, the compiler writer is
considering two code sequences that require the following instruction counts:

Instruction count for instruction classCode sequence
A B C

1 2 1 2
2 4 1 1

Which code sequence executes the most instructions? Which will be faster?
What is the CPI for each sequence?

Answer:

Sequence 1: executes 2 + 1 + 2 = 5 instructions
Sequence 2: executes 4 + 1 + 1 = 6 instructions ""

Instruction class CPI for this instruction class
A 1
B 2
C 3

i
n

i
i CCPI != "

=1
cycles clock CPU

Sequence 1: CPU clock cycles = (2 !1) + (1 !2) + (2 !3) = 10 cycles
Sequence 2: CPU clock cycles = (4 !1) + (1 !2) + (1 !3) = 9 cycles

#! Therefore Sequence 2 is faster although it executes more instructions

count nInstructio
cycles clock CPUCPI =Using the formula:

Sequence 1: CPI = 10/5 = 2
Sequence 2: CPI = 9/6 = 1.5

Using the formula:

#! Since Sequence 2 takes fewer overall clock cycles but has more
 instructions it must have a lower CPI

•! Hardware performance is a key to the
effectiveness of the entire system

•! Performance has to be measured and
compared to evaluate designs

•! To optimize the performance, major affecting
factors have to be known

•! For different types of applications
–! different performance metrics may be appropriate
–! different aspects of a computer system may be

most significant
•! Instructions use and implementation, memory

hierarchy and I/O handling are among the
factors that affect the performance

rate Clock
CPIcount nInstructiotime CPU !

=

 Instr. Count CPI Clock Rate
Program X
Compiler X X
Instruction Set X X
Organization X X
Technology X

i
n

i
i CCPI != "

=1
cycles clock CPU

Where: Ci is the count of number of instructions of class i executed
 CPIi is the average number of cycles per instruction for that instruction class
 n is the number of different instruction classes

Performance =
1

Execution time

CPU time =
Instructions

Program
"

Cycles
Instruction

"
Seconds

Cycle

CPU clock cycles = CPIi
i=1

n

" # Instructionsi

Speedup =
Performance (B)
Performance (A)

=
Time (A)
Time (B)

•! A common theme in Hardware design is to make the common case fast

•! Increasing the clock rate would not affect memory access time

•! Using a floating point processing unit does not speed integer ALU operations
Example: Floating point instructions improved to run 2X; but only 10% of
 actual instructions are floating point

 Exec-Timenew = Exec-Timeold x (0.9 + .1/2) = 0.95 x Exec-Timeold

 Speedupoverall = Exec-Timeold / Exec-Timenew = 1/0.95 = 1.053

The performance enhancement possible with a given improvement
is limited by the amount that the improved feature is used

Execution time after improvement =

 Execution time affected by the improvement
Amount of improvement

 + Execution time unaffected

Timeold = Timeold * Fractionunchanged + Fractionenhanced()

Timenew = Timeold * Fractionunchanged + Fractionenhanced
Speedupenhanced

"

$

%

&
'

Speedupoverall =
Timeold
Timenew

=
Timeold

Timeold * Fractionunchanged +
Fractionenhanced
Speedupenhanced

"

$

%

&
'

=
1

Fractionunchanged +
Fractionenhanced
Speedupenhanced

Speedupoverall =
1

1" Fractionenhanced() +
Fractionenhanced
Speedupenhanced

CDC 6600
NU 1108

ATLAS

ICL 1907 1.1 µs

B5500

KDF9
Time

Instructions
executed

Code size in
instructions

Code size
in bits

12
11
10
9
8
7

6

5

4

3

2

1

•! The Burroughs B5500 machine is designed specifically for Algol 60 programs
•! Although CDC 6600’s programs are over 3 times as big as those of B5500,

yet the CDC machine runs them almost 6 times faster
•! Code size cannot be used as an indication for performance

Computer A Computer B
Program 1 (seconds) 1 10
Program 2 (seconds) 1000 100
Total time (seconds) 1001 110

•! Wrong summary can present a confusing picture
–! A is 10 times faster than B for program 1
–! B is 10 times faster than A for program 2

•! Total execution time is a consistent summary measure

•! Relative execution times for the same workload
–! Assuming that programs 1 and 2 are executing for the same number of
times on computers A and B

CPU Performance (B)
CPU Performance (A)

=
Total execution time (A)
Total execution time (B)

=
1001
110

= 9.1

Execution time is the only valid and unimpeachable measure of performance

!
=

=
n

i
in 1

TimeExecution_1(AM) Mean Arithmetic

!
=

"=
n

i
iw

1
 i TimeExecution_(WAM) MeanArithmetic Weighted

Norm. to A Norm. to B
Time on A Time on B A B A B

Program 1 1 10 1 10 0.1 1
Program 2 1000 100 1 0.1 10 1
AM of normalized time 1 5.05 5.05 1
AM of time 500.5 55 1 0 .11 9.1 1

•! Weighted arithmetic means summarize performance while tracking exec. time

•! Never use AM for normalizing time relative to a reference machine

Where: n is the number of programs executed
 wi is a weighting factor that indicates the frequency of executing program i

 with and 10 !! iw!
=

=
n

i
w

1
 i 1

$! Geometric mean is suitable for reporting average normalized execution time

 Where: n is the number of programs executed

 With

n
n

i
i!

=

=
1

Time_ratioExecution_(GM) MeanGeometric

!!
"

#
$$
%

&
=

i

i

i

i

Y
X

Y
X MeanGeometric

)(MeanGeometric
)(MeanGeometric

Norm. to A Norm. to B
Time on A Time on B A B A B

Program 1 1 10 1 10 0.1 1
Program 2 1000 100 1 0.1 10 1
GM of time or normalized time 31.62 31.62 1 1 1 1

