
Practically everything adapted from slides by Peter J. Ashenden, VHDL Quick Start

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides

• Digital designers often employ abstraction hierarchy, which can

be expressed in two domains:

– Structural domain: Components are described in terms of an

interconnection of more primitive components

– Behavior domain: Components are described by defining the their
input/output responses by means of a procedure

Strcutural

Decomposition

Behavioral

Decomposition

Silicon

Circuit

Gate

Register

Chip

PMS

In
c
re

a
s
e
d
 c

o
m

p
e
x
it
y
 a

n
d
 d

e
ta

ils

Level Structural
Primitive

Behavior
Representation

PMS CPU, memories,
buses

Performance
specifications

Chip Microprocessor,
RAM, UART

I/O response,
algorithms

Register ALU, counter,
MUX

Truth table, state
table

Gate AND, OR, flip-
flop

Boolean
equations

Circuit Transistor, R, L,
and C

Differential
equations

Silicon Geometrical
objects

Process
specifications.

Simulation continues until

the event queue is empty

or stopped externally by

the designer

• Device behavioral model is represented by procedure calls

• Events within the simulator are kept in a time-based queue

• Events stored as three-tuples (Module #, Pin #, New logic value)

• Depending on the behavioral model of a module, the handling of an

event usually trigger other events that will be inserted in the event queue

Module 2

Module 3

Module 1Module 0

100 ns

6

3

8

0, 6, 1

- - - - -

- - - - -

- - - - -

- - - - -

- - - - -

1, 8, 0

Event

Queue

Events

Time

0

- -

- -

- -

- -

- -

100

high level of

abstraction

Functional Structural

Geometric

“Y-chart” due to Gajski & Kahn

low level of

abstraction

Functional Structural

Geometric

Algorithm

(behavioral)

Register-Transfer

Language

Boolean Equation

Differential Equation

“Y-chart” due to Gajski & Kahn

Functional Structural

Geometric

Processor-Memory

Switch

Register-Transfer

Gate

Transistor

“Y-chart” due to Gajski & Kahn

Functional Structural

Geometric

Polygons

Sticks

Standard Cells

Floor Plan

“Y-chart” due to Gajski & Kahn

• Program simulating behavior of design

– Match interfaces

– Use any language or algorithm

• Can use to develop external HW or SW

• Graphics examples

– SGI modified software OpenGL

– UNC process-per-board

• A hardware design language provides
primitives for describing both structural and
behavioral models of the design

• Hardware design languages are useful in
– Documenting and modeling the design

– Ensuring design portability

• Every hardware design language is supported
by a simulator that helps in:
– Validating the design

– Mitigating the risk of design faults

– Avoiding expensive prototyping for complicated
hardware

• VHDL and Verilog are the most famous

and widely used hardware design

language

• Focus on VHDL:

– Interfaces, Behavior, Structure, Test

Benches

– Analysis, Elaboration, Simulation, Synthesis

• VHDL is for writing models of a system

• Reasons for modeling

– requirements specification

– documentation

– testing using simulation

– formal verification

– synthesis

• Goal

– most reliable design process, with minimum cost and time

– avoid design errors!

• Entity declaration

– describes the input/output ports of a module

entity reg4 is

 port (d0, d1, d2, d3, en, clk : in bit;

 q0, q1, q2, q3 : out bit);
end entity reg4;

entity name port names port mode (direction)

port type reserved words

punctuation

• Omit entity at end of entity declaration

entity reg4 is

 port (d0, d1, d2, d3, en, clk : in bit;

 q0, q1, q2, q3 : out bit);
end reg4;

• Architecture body

– describes an implementation of an entity

– may be several per entity

• Behavioral architecture

– describes the algorithm performed by the
module

– contains
• process statements, each containing

• sequential statements, including

• signal assignment statements and

• wait statements

architecture behav of reg4 is

begin
 storage : process is

 variable stored_d0, stored_d1, stored_d2, stored_d3 : bit;
 begin

 if en = '1' and clk = '1' then

 stored_d0 := d0;
 stored_d1 := d1;

 stored_d2 := d2;
 stored_d3 := d3;

 end if;

 q0 <= stored_d0 after 5 ns;
 q1 <= stored_d1 after 5 ns;

 q2 <= stored_d2 after 5 ns;
 q3 <= stored_d3 after 5 ns;

 wait on d0, d1, d2, d3, en, clk;

 end process storage;
end architecture behav;

• Structural architecture

– implements the module as a composition of

subsystems

– contains

• signal declarations, for internal interconnections

– the entity ports are also treated as signals

• component instances

– instances of previously declared entity/architecture pairs

• port maps in component instances

– connect signals to component ports

• wait statements

int_clk

d0

d1

d2

d3

en

clk

q0

q1

q2

q3

bit0

d_latch

d

clk

q

bit1

d_latch

d

clk

q

bit2

d_latch

d

clk

q

bit3

d_latch

d

clk

q

gate

and2

a

b

y

• First declare D-latch and and-gate entities and
architectures

entity d_latch is

 port (d, clk : in bit; q : out bit);
end entity d_latch;

architecture basic of d_latch is

begin

 latch_behavior : process is

 begin
 if clk = ‘1’ then

 q <= d after 2 ns;
 end if;

 wait on clk, d;

 end process latch_behavior;

end architecture basic;

entity and2 is

 port (a, b : in bit; y : out bit);
end entity and2;

architecture basic of and2 is

begin

 and2_behavior : process is

 begin
 y <= a and b after 2 ns;

 wait on a, b;
 end process and2_behavior;

end architecture basic;

• Now use them to implement a register

architecture struct of reg4 is

 signal int_clk : bit;

begin

 bit0 : entity work.d_latch(basic)

 port map (d0, int_clk, q0);

 bit1 : entity work.d_latch(basic)

 port map (d1, int_clk, q1);

 bit2 : entity work.d_latch(basic)

 port map (d2, int_clk, q2);

 bit3 : entity work.d_latch(basic)

 port map (d3, int_clk, q3);

 gate : entity work.and2(basic)
 port map (en, clk, int_clk);

end architecture struct;

• An architecture can contain both

behavioral and structural parts

– process statements and component

instances

• collectively called concurrent statements

– processes can read and assign to signals

• Example: register-transfer-level model

– data path described structurally

– control section described behaviorally

shift_reg

reg

shift_

adder
control_

section

multiplier multiplicand

product

entity multiplier is

 port (clk, reset : in bit;
 multiplicand, multiplier : in integer;

 product : out integer);
end entity multiplier;

architecture mixed of mulitplier is

 signal partial_product, full_product : integer;

 signal arith_control, result_en, mult_bit, mult_load : bit;

begin

 arith_unit : entity work.shift_adder(behavior)

 port map (addend => multiplicand, augend => full_product,
 sum => partial_product,

 add_control => arith_control);

 result : entity work.reg(behavior)

 port map (d => partial_product, q => full_product,

 en => result_en, reset => reset);

 ...

 …

 multiplier_sr : entity work.shift_reg(behavior)

 port map (d => multiplier, q => mult_bit,
 load => mult_load, clk => clk);

 product <= full_product;

 control_section : process is

 -- variable declarations for control_section

 -- …
 begin

 -- sequential statements to assign values to control signals
 -- …

 wait on clk, reset;

 end process control_section;

end architecture mixed;

• Testing a design by simulation

• Use a test bench model

– an architecture body that includes an

instance of the design under test

– applies sequences of test values to inputs

– monitors values on output signals

• either using simulator

• or with a process that verifies correct operation

entity test_bench is

end entity test_bench;

architecture test_reg4 of test_bench is

 signal d0, d1, d2, d3, en, clk, q0, q1, q2, q3 : bit;

begin

 dut : entity work.reg4(behav)

 port map (d0, d1, d2, d3, en, clk, q0, q1, q2, q3);

 stimulus : process is

 begin

 d0 <= ’1’; d1 <= ’1’; d2 <= ’1’; d3 <= ’1’; wait for 20 ns;

 en <= ’0’; clk <= ’0’; wait for 20 ns;

 en <= ’1’; wait for 20 ns;

 clk <= ’1’; wait for 20 ns;

 d0 <= ’0’; d1 <= ’0’; d2 <= ’0’; d3 <= ’0’; wait for 20 ns;

 en <= ’0’; wait for 20 ns;

 …

 wait;

 end process stimulus;

end architecture test_reg4;

• Test that a refinement of a design is
correct
– that lower-level structural model does the

same as a behavioral model

• Test bench includes two instances of
design under test
– behavioral and lower-level structural

– stimulates both with same inputs

– compares outputs for equality

• Need to take account of timing
differences

architecture regression of test_bench is

 signal d0, d1, d2, d3, en, clk : bit;

 signal q0a, q1a, q2a, q3a, q0b, q1b, q2b, q3b : bit;

begin

 dut_a : entity work.reg4(struct)
 port map (d0, d1, d2, d3, en, clk, q0a, q1a, q2a, q3a);

 dut_b : entity work.reg4(behav)
 port map (d0, d1, d2, d3, en, clk, q0b, q1b, q2b, q3b);

 stimulus : process is
 begin

 d0 <= ’1’; d1 <= ’1’; d2 <= ’1’; d3 <= ’1’; wait for 20 ns;

 en <= ’0’; clk <= ’0’; wait for 20 ns;

 en <= ’1’; wait for 20 ns;

 clk <= ’1’; wait for 20 ns;

 …

 wait;

 end process stimulus;

 ...

 …

 verify : process is

 begin

 wait for 10 ns;

 assert q0a = q0b and q1a = q1b and q2a = q2b and q3a = q3b

 report ”implementations have different outputs”

 severity error;

 wait on d0, d1, d2, d3, en, clk;

 end process verify;

end architecture regression;

• Analysis

• Elaboration

• Simulation

• Synthesis

• Check for syntax and semantic errors

– syntax: grammar of the language

– semantics: the meaning of the model

• Analyze each design unit separately

– entity declaration

– architecture body

– …

– best if each design unit is in a separate file

• Analyzed design units are placed in a library

– in an implementation dependent internal form

– current library is called work

• “Flattening” the design hierarchy

– create ports

– create signals and processes within
architecture body

– for each component instance, copy
instantiated entity and architecture body

– repeat recursively
• bottom out at purely behavioral architecture

bodies

• Final result of elaboration

– flat collection of signal nets and processes

int_clk

d0

d1

d2

d3

en

clk

q0

q1

q2

q3

bit0

d_latch

d

clk

q

bit1

d_latch

d

clk

q

bit2

d_latch

d

clk

q

bit3

d_latch

d

clk

q

gate

and2

a

b

y

reg4(struct)

int_clk

d0

d1

d2

d3

en

clk

q0

q1

q2

q3

bit0

bit1

bit2

bit3

gate

reg4(struct)
d_latch(basic)

d

clk

q

d_latch(basic)

d

clk

q

d_latch(basic)

d

clk

q

d_latch(basic)

d

clk

q

and2(basic)

a

b

y
process with variables and

statements

• Execution of the processes in the elaborated
model

• Discrete event simulation
– time advances in discrete steps

– when signal values change—events

• A processes is sensitive to events on input
signals
– specified in wait statements

– resumes and schedules new values on output
signals
• schedules transactions

• event on a signal if new value different from old value

• Initialization phase

– each signal is given its initial value

– simulation time set to 0

– for each process

• activate

• execute until a wait statement, then suspend

– execution usually involves scheduling transactions on

signals for later times

• Simulation cycle

– advance simulation time to time of next transaction

– for each transaction at this time

• update signal value

– event if new value is different from old value

– for each process sensitive to any of these events, or whose

“wait for …” time-out has expired

• resume

• execute until a wait statement, then suspend

• Simulation finishes when there are no further

scheduled transactions

• Translates register-transfer-level (RTL)

design into gate-level netlist

• Restrictions on coding style for RTL

model

• Tool dependent

Requirements

Simulate RTL Model

Gate-level

Model

Synthesize

Simulate Test Bench

ASIC or FPGA Place & Route

Timing

Model
Simulate

