
Most slides adapted from David Patterson. Some from Mohomed Younis

• Invalidation protocol, write-back cache

• Each block of memory is in one state:
– Clean in all caches and up-to-date in memory

(Shared)

– OR Dirty in exactly one cache (Exclusive)

– OR Not in any caches

• Each cache block is in one state (track these):
– Shared : block can be read

– OR Exclusive : cache has only copy, it is write-able,
and dirty

– OR Invalid : block contains no data

• Read misses: cause all caches to snoop bus

• Writes to clean line are treated as misses

• Complications
– Cannot update cache until

bus is obtained

– Two step process:

• Arbitrate for bus

• Place miss on bus and
complete operation

– Split transaction bus:

• Bus transaction is not
atomic

• Multiple misses can
interleave, allowing two
caches to grab block in
the Exclusive state

• Must track and prevent
multiple misses for one
block

Assumes memory

blocks A1 and A2 map

to same cache block,

initial cache state is

invalid

Assumes memory

blocks A1 and A2 map

to same cache block

Assumes memory

blocks A1 and A2 map

to same cache block

Assumes memory

blocks A1 and A2 map

to same cache block

Assumes memory

blocks A1 and A2 map

to same cache block

A1

A1

Assumes memory

blocks A1 and A2 map

to same cache block

• Directory per cache that tracks state of every
block in every cache
– Which caches have a block, dirty vs. clean, ...

– Info per memory block vs. per cache block?
+ In memory => simpler protocol (centralized/one location)

– In memory => directory is f(memory size) vs. f(cache size)

• To prevent directory from being a bottleneck
– distribute directory entries with memory

– each tracks of
which processor
has their blocks

• Similar to Snoopy Protocol: Three states

– Shared: Multiple processors have the block cached

and the contents of the block in memory (as well as

all caches) is up-to-date

– Uncached No processor has a copy of the block

(not valid in any cache)

– Exclusive: Only one processor (owner) has the

block cached and the contents of the block in
memory is out-to-date (the block is dirty)

• In addition to cache state, must track which

processors have data when in the shared state

– usually bit vector, 1 if processor has copy

• Keep it simple(r):
– Writes to non-exclusive data => write miss

– Processor blocks until access completes

– Assume messages received and acted upon in
order sent

• Terms: typically 3 processors involved
– Local node where a request originates

– Home node where the memory location of an
address resides

– Remote node has a copy of a cache block, whether
exclusive or shared

• No bus and do not want to broadcast:
– interconnect no longer single arbitration point

– all messages have explicit responses

• Message sent to directory causes two

actions:

– Update the directory

– More messages to satisfy request

• We assume operations atomic, but they

are not; reality is much harder; must

avoid deadlock when run out of buffers

in network

Type SRC DEST MSG

Read miss local cache home directory P,A

P has read miss at A; request data and make P a read sharer

Write miss local cache home directory P,A

P has write miss at A; request data and make P exclusive owner

Invalidate home directory remote cache A

Invalidate shared data at A

Fetch home directory remote cache A

Fetch block A home; change A remote state to shared

Fetch/invalidate home directory remote cache A

Fetch block A home; invalidate remote copy

Data value reply home directory local cache D

Return data value from home memory

Data write back remote cache home directory A,D

Write back data value for A

State machine for CPU

requests for each

memory block

• States identical to

snoopy case

– Transactions very

similar.

• Miss messages to
home directory

• Explicit invalidate &

data fetch requests

State machine

for Directory requests

for each

memory block

• Same states and

structure as the

transition diagram for an
individual cache

– Actions:

• update of directory state

• send messages to satisfy

requests

– Tracks all copies of each

memory block

• Sharers set

implementation can use a

bit vector of a size of #
processors for each block

P2: Write 20 to A1

Assumes memory

blocks A1 and A2 map

to same cache block

P2: Write 20 to A1

WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

Assumes memory

blocks A1 and A2 map

to same cache block

P2: Write 20 to A1

WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

Excl. A1 10

Assumes memory

blocks A1 and A2 map

to same cache block

P2: Write 20 to A1

WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

Excl. A1 10

Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

A1

Write Back

Assumes memory

blocks A1 and A2 map

to same cache block

P2: Write 20 to A1

Excl. A1 10 DaRp P1 A1 0

Excl. A1 10

Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

A1

Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10

Assumes memory

blocks A1 and A2 map

to same cache block

P2: Write 20 to A1

WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

Excl. A1 10

Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

A1

Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10

WrBk P2 A1 20 A1 Unca. {} 20

Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

WrMs P2 A2 A2 Excl. {P2} 0

Assumes memory

blocks A1 and A2 map

to same cache block

