
Most slides adapted from David Patterson. Some from Mohomed Younis 



• Invalidation protocol, write-back cache 

• Each block of memory is in one state: 
– Clean in all caches and up-to-date in memory 

(Shared) 

– OR Dirty in exactly one cache (Exclusive) 

– OR Not in any caches 

• Each cache block is in one state (track these): 
– Shared : block can be read 

– OR Exclusive : cache has only copy, it is write-able, 
and dirty 

– OR Invalid : block contains no data 

• Read misses: cause all caches to snoop bus 

• Writes to clean line are treated as misses 



• Complications  
– Cannot update cache until 

bus is obtained 

– Two step process: 

• Arbitrate for bus  

• Place miss on bus and 
complete operation 

–  Split transaction bus: 

• Bus transaction is not 
atomic 

• Multiple misses can 
interleave, allowing two 
caches to grab block in 
the Exclusive state 

• Must track and prevent 
multiple misses for one 
block 
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• Directory per cache that tracks state of every 
block in every cache 
– Which caches have a block, dirty vs. clean, ... 

– Info per memory block vs. per cache block? 
+ In memory => simpler protocol (centralized/one location) 

– In memory => directory is f(memory size) vs. f(cache size) 

• To prevent directory from being a bottleneck 
– distribute directory entries with memory 

– each tracks of  
which processor  
has their blocks 



• Similar to Snoopy Protocol: Three states 

– Shared: Multiple processors have the block cached 

and the contents of the block in memory (as well as 

all caches) is up-to-date  

– Uncached No processor has a copy of the block 

(not valid in any cache) 

– Exclusive: Only one processor (owner) has the 

block cached and the contents of the block in 
memory is out-to-date (the block is dirty) 

• In addition to cache state, must track which 

processors have data when in the shared state  

– usually bit vector, 1 if processor has copy 



• Keep it simple(r): 
– Writes to non-exclusive data => write miss 

– Processor blocks until access completes 

– Assume messages received and acted upon in 
order sent 

• Terms: typically 3 processors involved 
– Local node where a request originates 

– Home node where the memory location of an 
address resides 

– Remote node has a copy of a cache block, whether 
exclusive or shared 

• No bus and do not want to broadcast: 
– interconnect no longer single arbitration point 

– all messages have explicit responses 



• Message sent to directory causes two 

actions: 

– Update the directory 

– More messages to satisfy request 

• We assume operations atomic, but they 

are not; reality is much harder; must 

avoid deadlock when run out of buffers 

in network 



Type SRC DEST MSG 

Read miss local cache home directory P,A 

P has read miss at A; request data and make P a read sharer 

Write miss local cache home directory P,A 

P has write miss at A; request data and make P exclusive owner 

Invalidate home directory remote cache A 

Invalidate shared data at A 

Fetch home directory remote cache A 

Fetch block A home; change A remote state to shared 

Fetch/invalidate home directory remote cache A 

Fetch block A home; invalidate remote copy 

Data value reply home directory local cache D 

Return data value from home memory 

Data write back remote cache home directory A,D 

Write back data value for A 



State machine for CPU 

requests for each 

memory block 

• States identical to 

snoopy case 

– Transactions very 

similar. 

• Miss messages to 
home directory 

• Explicit invalidate & 

data fetch requests 



State machine 

for Directory requests 

for each  

memory block 

• Same states and 

structure as the 

transition diagram for an 
individual cache 

– Actions:  

• update of directory state  

• send messages to satisfy 

requests  

– Tracks all copies of each 

memory block  

• Sharers set 

implementation can use a 

bit vector of a size of # 
processors for each block  
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