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• Cases that affect instruction execution                     
semantics and thus need to be detected and corrected 

• Hazards types 
– Structural hazard: attempt to use a resource two different 

ways at same time 

• Single memory for instruction and data 

– Data hazard: attempt to use item before it is ready 

• Instruction depends on result of prior instruction still in the 
pipeline 

– Control hazard: attempt to make a decision before condition is 
evaluated 

• branch instructions 

• Hazards can always be resolved by waiting 
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I: add r1,r2,r3 

J: sub r4,r1,r3 

• Read After Write (RAW)  

InstrJ tries to read operand before InstrI writes 

it 

   

• Caused by a “Data Dependence” (in compiler 

nomenclature).  This hazard results from an 

actual need for communication. 
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• Write After Read (WAR)  
InstrJ writes operand before InstrI reads it 

• Called an “anti-dependence” in compilers. 
– This results from reuse of the name “r1”. 

• Can’t happen in MIPS 5 stage pipeline because: 
–  All instructions take 5 stages, and 

–  Reads are always in stage 2, and  

–  Writes are always in stage 5 

I: sub r4,r1,r3  

J: add r1,r2,r3 

K: mul r6,r1,r7 
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• Write After Write (WAW)  
InstrJ writes operand before InstrI writes it. 

• Called an “output dependence” in compilers 
– This also results from the reuse of name “r1”. 

• Can’t happen in MIPS 5 stage pipeline:  
–  All instructions take 5 stages, and  

–  Writes are always in stage 5 

• Do see WAR and WAW in more complicated pipes 

I: mul r1,r4,r3  

J: add r1,r2,r3 

K: sub r6,r1,r7 
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• Adding hardware? How? Where? 

• Detection? 

• Compilation techniques? 

• What is the cost of load delays? 
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How is this different from the instruction issue stall? 
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Try producing fast code for 

  a = b + c; 

  d = e – f; 

assuming a, b, c, d ,e, and f in memory.  
Slow code: 

  LW  Rb,b 

  LW  Rc,c 

  ADD  Ra,Rb,Rc 

  SW   a,Ra  

  LW  Re,e  

  LW  Rf,f 

  SUB  Rd,Re,Rf 

  SW  d,Rd 

Fast code: 

  LW  Rb,b 

  LW  Rc,c 

  LW  Re,e  

  ADD  Ra,Rb,Rc 

  LW  Rf,f 

  SW   a,Ra  

  SUB  Rd,Re,Rf 

  SW  d,Rd 
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• What is exposed about this organizational hazard in the 

instruction set? 

• k cycle delay? 

– bad, CPI is not part of ISA 

• k instruction slot delay 

– load should not be followed by use of the value in the next k 
instructions 

• Nothing, but code can reduce run-time delays 

• MIPS did the transformation in the assembler 
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• Cases that affect instruction execution                     
semantics and thus need to be detected and corrected 

• Hazards types 
– Structural hazard: attempt to use a resource two different 

ways at same time 

• Single memory for instruction and data 

– Data hazard: attempt to use item before it is ready 

• Instruction depends on result of prior instruction still in the 
pipeline 

– Control hazard: attempt to make a decision before condition is 
evaluated 

• branch instructions 

• Hazards can always be resolved by waiting 



10: beq r1,r3,36 

14: and r2,r3,r5  

18: or  r6,r1,r7 

22: add r8,r1,r9 

36: xor r10,r1,r11 
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• If 30% branch, 3-cycle stall significant! 

• Two part solution: 

– Determine branch taken or not sooner, AND 

– Compute taken branch address earlier 

• MIPS branch tests if register = 0 or  0 

• MIPS Solution: 

– Move Zero test to ID/RF stage 

– Adder to calculate new PC in ID/RF stage 

– 1 clock cycle penalty for branch versus 3 
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1. Stall until branch direction is clear 

2. Predict Branch Not Taken 
– Execute successor instructions in sequence 

– “Squash” instructions in pipeline if branch taken 

– Advantage of late pipeline state update 

– 47% MIPS branches not taken on average 

– PC+4 already calculated, so use it to get next instruction 

3. Predict Branch Taken 
– 53% MIPS branches taken on average 

– But haven’t calculated branch target address in MIPS 

• MIPS still incurs 1 cycle branch penalty 

• Other machines: branch target known before outcome 
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4. Delayed Branch 
– Define branch to take place AFTER a following 

instruction 
branch instruction 

 sequential successor1 
 sequential successor2 
 ........ 
 sequential successorn 

........ 

 branch target if taken 

– 1 slot delay allows proper decision and branch 
target address in 5 stage pipeline 

– MIPS uses this 

Branch delay of length n 
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• Where to get branch delay slot instructions? 

– Before branch instruction 

– From the target address 

• only valuable when branch taken 

– From fall through 

• only valuable when branch not taken 

– Canceling branches allow more slots to be filled 

• Compiler effectiveness for single delay slot: 

– Fills about 60% of branch delay slots 

– About 80% of instructions executed in branch delay slots useful in 

computation 

– 48% (60% x 80%) of slots usefully filled 

• Delayed Branch downside: 7-8 stage pipelines, multiple 

instructions issued per clock (superscalar) 
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Best scenario Good for loops Good taken strategy 

R4 must be 

temp reg. 



Scheduling 
Strategy 

Requirements 
Improves performance 

when? 

(a) From before Branch must not depend on the 
rescheduled instructions 

Always 

(b) From target Must be OK to execute rescheduled 
instructions if branch is not taken. 

May need to duplicate instructions. 

When branch is taken. May 
enlarge programs if 

instructions are duplicated. 

(c) From fall  

      through 

Must be okay to execute instructions 
if branch is taken. 

When branch is not taken. 

 

• Limitation on delayed-branch scheduling arise from: 

– Restrictions on instructions scheduled into the delay slots 

– Ability to predict at compile-time whether a branch is likely to be 
taken 

• May have to fill with a no-op instruction 

– Average 30% wasted 

• Additional PC is needed to allow safe operation in case of 
interrupts (more on this later) 



Assume:  

14% Conditional & Unconditional  

65% Taken; 52% Delay slots not usefully filled 

  

Pipeline speedup =  Pipeline depth
1 +  Pipeline stall CPI

=  Pipeline depth
1 +  Branch frequency Branch penalty

Scheduling Scheme Branch 

Penalty 

CPI Pipeline 

Speedup 

Speedup 

vs stall 

Stall pipeline 3.00 1.42 3.52 1.00 

Predict taken 1.00 1.14 4.39 1.25 

Predict not taken 1.00 1.09 4.58 1.30 

Delayed branch 0.52 1.07 4.66 1.32 
Slide: David Culler 
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Predict taken 

Profile based 

• Examination of program behavior 

– Assume branch is usually taken based on statistics but misprediction 

rate still 9%-59% 

• Predict on branch direction forward/backward based on statistics 
and code generation convention   

– Profile information from earlier program runs 



• I/O device request 

• Breakpoint  

• Integer arithmetic 

overflow 

• FP arithmetic 

anomaly 

• Page fault 

• Misaligned memory 

accesses 

• Memory-protection 

violation 

• Undefined instruction 

• Privilege violation 

• Hardware and power 

failure 



• Synchronous vs. asynchronous 

– I/O exceptions: Asyncronous 
• Allow completion of current instruction 

– Exceptions within instruction: Synchronous 
• Harder to deal with 

• User requested vs. coerced 
– Requested predictable and easier to handle 

• User maskable vs. unmaskable  

• Resume vs. terminate 

– Easier to implement exceptions that 
terminate program execution 



• Some exceptions require restart of 

instruction 

– e.g. Page fault in MEM stage 

• When exception occurs, pipeline control 

can: 

– Force a trap instruction into next IF stage 

– Until the trap is taken, turn off all writes for 

the faulting (and later) instructions 

– OS exception-handling routine saves 

faulting instruction PC 



• Precise exceptions 
– Instructions before the faulting one complete 

– Instructions after it restart 

– As if execution were serial 

• Exception handling complex if faulting 
instruction can change state before exception 
occurs 

• Precise exceptions simplifies OS  

• Required for demand paging 


