
Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides

Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

• Cases that affect instruction execution
semantics and thus need to be detected and corrected

• Hazards types
– Structural hazard: attempt to use a resource two different

ways at same time

• Single memory for instruction and data

– Data hazard: attempt to use item before it is ready

• Instruction depends on result of prior instruction still in the
pipeline

– Control hazard: attempt to make a decision before condition is
evaluated

• branch instructions

• Hazards can always be resolved by waiting

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
L
U

DMem Ifetch Reg

Time (clock cycles)

IF ID/RF EX MEM WB

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Slide: David Culler

Reg A
L
U

DMem Ifetch Reg

I: add r1,r2,r3

J: sub r4,r1,r3

• Read After Write (RAW)

InstrJ tries to read operand before InstrI writes

it

• Caused by a “Data Dependence” (in compiler

nomenclature). This hazard results from an

actual need for communication.

Slide: David Culler

• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” in compilers.
– This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and

– Reads are always in stage 2, and

– Writes are always in stage 5

I: sub r4,r1,r3

J: add r1,r2,r3

K: mul r6,r1,r7

Slide: David Culler

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” in compilers
– This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline:
– All instructions take 5 stages, and

– Writes are always in stage 5

• Do see WAR and WAW in more complicated pipes

I: mul r1,r4,r3

J: add r1,r2,r3

K: sub r6,r1,r7

Slide: David Culler

Time (clock cycles)

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Slide: David Culler

M
E

M
/W

R

I
D

/E
X

E
X

/M
E

M

Data
Memory

A
L
U

m
ux

m

ux

R
e
giste

rs

NextPC

Immediate

m
ux

Slide: David Culler

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Slide: David Culler

• Adding hardware? How? Where?

• Detection?

• Compilation techniques?

• What is the cost of load delays?

Slide: David Culler

Time (clock cycles)

or r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
L
U

DMem Ifetch Reg

Ifetch A
L
U

DMem Bubble Reg

Reg Ifetch A
L
U

DMem Reg Bubble

Ifetch A
L
U

DMem Reg Bubble Reg

How is this different from the instruction issue stall?

Slide: David Culler

Try producing fast code for

 a = b + c;

 d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

 LW Rb,b

 LW Rc,c

 ADD Ra,Rb,Rc

 SW a,Ra

 LW Re,e

 LW Rf,f

 SUB Rd,Re,Rf

 SW d,Rd

Fast code:

 LW Rb,b

 LW Rc,c

 LW Re,e

 ADD Ra,Rb,Rc

 LW Rf,f

 SW a,Ra

 SUB Rd,Re,Rf

 SW d,Rd

Slide: David Culler

• What is exposed about this organizational hazard in the

instruction set?

• k cycle delay?

– bad, CPI is not part of ISA

• k instruction slot delay

– load should not be followed by use of the value in the next k
instructions

• Nothing, but code can reduce run-time delays

• MIPS did the transformation in the assembler

Slide: David Culler

• Cases that affect instruction execution
semantics and thus need to be detected and corrected

• Hazards types
– Structural hazard: attempt to use a resource two different

ways at same time

• Single memory for instruction and data

– Data hazard: attempt to use item before it is ready

• Instruction depends on result of prior instruction still in the
pipeline

– Control hazard: attempt to make a decision before condition is
evaluated

• branch instructions

• Hazards can always be resolved by waiting

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Slide: David Culler

• If 30% branch, 3-cycle stall significant!

• Two part solution:

– Determine branch taken or not sooner, AND

– Compute taken branch address earlier

• MIPS branch tests if register = 0 or 0

• MIPS Solution:

– Move Zero test to ID/RF stage

– Adder to calculate new PC in ID/RF stage

– 1 clock cycle penalty for branch versus 3

Slide: David Culler

Add

Zero?

Figure: Dave Patterson

1. Stall until branch direction is clear

2. Predict Branch Not Taken
– Execute successor instructions in sequence

– “Squash” instructions in pipeline if branch taken

– Advantage of late pipeline state update

– 47% MIPS branches not taken on average

– PC+4 already calculated, so use it to get next instruction

3. Predict Branch Taken
– 53% MIPS branches taken on average

– But haven’t calculated branch target address in MIPS

• MIPS still incurs 1 cycle branch penalty

• Other machines: branch target known before outcome

Slide: David Culler

4. Delayed Branch
– Define branch to take place AFTER a following

instruction
branch instruction

 sequential successor1
 sequential successor2

 sequential successorn

........

 branch target if taken

– 1 slot delay allows proper decision and branch
target address in 5 stage pipeline

– MIPS uses this

Branch delay of length n

Slide: David Culler

• Where to get branch delay slot instructions?

– Before branch instruction

– From the target address

• only valuable when branch taken

– From fall through

• only valuable when branch not taken

– Canceling branches allow more slots to be filled

• Compiler effectiveness for single delay slot:

– Fills about 60% of branch delay slots

– About 80% of instructions executed in branch delay slots useful in

computation

– 48% (60% x 80%) of slots usefully filled

• Delayed Branch downside: 7-8 stage pipelines, multiple

instructions issued per clock (superscalar)

Slide: David Culler

Best scenario Good for loops Good taken strategy

R4 must be

temp reg.

Scheduling
Strategy

Requirements
Improves performance

when?

(a) From before Branch must not depend on the
rescheduled instructions

Always

(b) From target Must be OK to execute rescheduled
instructions if branch is not taken.

May need to duplicate instructions.

When branch is taken. May
enlarge programs if

instructions are duplicated.

(c) From fall

 through

Must be okay to execute instructions
if branch is taken.

When branch is not taken.

• Limitation on delayed-branch scheduling arise from:

– Restrictions on instructions scheduled into the delay slots

– Ability to predict at compile-time whether a branch is likely to be
taken

• May have to fill with a no-op instruction

– Average 30% wasted

• Additional PC is needed to allow safe operation in case of
interrupts (more on this later)

Assume:

14% Conditional & Unconditional

65% Taken; 52% Delay slots not usefully filled

Pipeline speedup = Pipeline depth
1 + Pipeline stall CPI

= Pipeline depth
1 + Branch frequency Branch penalty

Scheduling Scheme Branch

Penalty

CPI Pipeline

Speedup

Speedup

vs stall

Stall pipeline 3.00 1.42 3.52 1.00

Predict taken 1.00 1.14 4.39 1.25

Predict not taken 1.00 1.09 4.58 1.30

Delayed branch 0.52 1.07 4.66 1.32
Slide: David Culler

In
s

tr
u

c
ti

o
n

s
 b

e
tw

e
e
n

m
is

p
re

d
ic

ti
o

n

Predict taken

Profile based

• Examination of program behavior

– Assume branch is usually taken based on statistics but misprediction

rate still 9%-59%

• Predict on branch direction forward/backward based on statistics
and code generation convention

– Profile information from earlier program runs

• I/O device request

• Breakpoint

• Integer arithmetic

overflow

• FP arithmetic

anomaly

• Page fault

• Misaligned memory

accesses

• Memory-protection

violation

• Undefined instruction

• Privilege violation

• Hardware and power

failure

• Synchronous vs. asynchronous

– I/O exceptions: Asyncronous
• Allow completion of current instruction

– Exceptions within instruction: Synchronous
• Harder to deal with

• User requested vs. coerced
– Requested predictable and easier to handle

• User maskable vs. unmaskable

• Resume vs. terminate

– Easier to implement exceptions that
terminate program execution

• Some exceptions require restart of

instruction

– e.g. Page fault in MEM stage

• When exception occurs, pipeline control

can:

– Force a trap instruction into next IF stage

– Until the trap is taken, turn off all writes for

the faulting (and later) instructions

– OS exception-handling routine saves

faulting instruction PC

• Precise exceptions
– Instructions before the faulting one complete

– Instructions after it restart

– As if execution were serial

• Exception handling complex if faulting
instruction can change state before exception
occurs

• Precise exceptions simplifies OS

• Required for demand paging

