
Most slides adapted from David Patterson. Some from Mohomed Younis

• SIMD programming

– PE point of view

– Data: shared or per-PE
• What data is distributed?

• What is shared over PE subset

• What data is broadcast with instruction stream?

– Data layout: shape [256][256]d;

– Communication primitives

– Higher-level operations
• Prefix sum: [i]r = j i [j]d

– 1,1,2,3,4 1,1+1=2,2+2=4,4+3=7,7+4=11

• Many problems do not map well to SIMD

– Better utilization from MIMD or ILP

• Data parallel model ⇒ Single Program

Multiple Data (SPMD) model

– All processors execute identical program

– Same program for SIMD, SISD or MIMD

– Compiler handles mapping to architecture

Can support either SW model on either HW basis

• Message Passing

• Shared memory/distributed memory

– Uniform Memory Access (UMA)

– Non-Uniform Memory Access (NUMA)

• Processors have private memories,

communicate via messages

• Advantages:

– Less hardware, easier to design

– Focuses attention on costly non-local

operations

• Each PE has local processor, data, (I/O)

– Explicit I/O to communicate with other PEs

– Essentially NUMA but integrated at I/O vs.

memory system

• Free run between Send & Receive

– Send + Receive = Synchronization between

processes (event model)

• Send: local buffer, remote receiving process/port

• Receive: remote sending process/port, local

buffer

• Early machines

– Local communication

– Blocking send & receive

• Later: DMA with non-blocking sends

– DMA for receive into buffer until processor

does receive, and then data is transferred to

local memory

• Later still: SW libraries to allow arbitrary

communication

• Processors communicate with shared

address space

• Easy on small-scale machines

• Advantages:

– Model of choice for uniprocessors, small-

scale multiprocessor

– Ease of programming

– Lower latency

– Easier to use hardware controlled caching

– Difficult to handle node failure

•Processors share a single centralized (UMA) memory through
a bus interconnect

•Feasible for small processor count to limit memory contention

•Centralized shared memory architectures are the most
common form of MIMD design

• Uses physically distributed (NUMA) memory to support large
processor counts (to avoid memory contention)

• Advantages
– Allows cost-effective way to scale the memory bandwidth

– Reduces memory latency

• Disadvantage
– Increased complexity of communicating data

• Physical locations

– Each PE can name every physical location

in the machine

• Shared data

– Each process can name all data it shares

with other processes

• Data transfer

– Use load and store, VM maps to local or remote

location

– Extra memory level: cache remote data

– Significant research on making the translation

transparent and scalable for many nodes

• Handling data consistency and protection challenging

• Latency depends on the underlying hardware architecture
(bus bandwidth, memory access time and support for

address translation)

• Scalability is limited given that the communication model is

so tightly coupled with process address space

• 1: Naming: how to solve large problem fast
– what data is shared

– how it is addressed

– what operations can access data

– how processes refer to each other

• Choice of naming affects code produced by a
compiler
– Just remember and load address or keep track of

processor number and local virtual address for
message passing

• Choice of naming affects replication of data
– In cache memory hierarchy or via SW replication

and consistency

• Global physical address space

– any processor can generate, address and access it

in a single operation

• Global virtual address space

– if the address space of each process can be

configured to contain all shared data of the parallel

program

• memory can be anywhere: virtual address translation

handles it

• Segmented shared address space

– locations are named <process number, address>

uniformly for all processes of the parallel program

• 2: Synchronization: To cooperate,

processes must coordinate

– Message passing is implicit coordination

with transmission or arrival of data

– Shared address additional operations to

explicitly coordinate:

e.g., write a flag, awaken a thread, interrupt

a processor

• 3: Latency and Bandwidth
– Bandwidth

• Need high bandwidth in communication

• Cannot scale, but stay close

• Match limits in network, memory, and processor

• Overhead to communicate is a problem in many machines

– Latency
• Affects performance, since processor may have to wait

• Affects ease of programming, since requires more thought
to overlap communication and computation

– Latency Hiding
• How can a mechanism help hide latency?

• Examples: overlap message send with computation, pre-
fetch data, switch to other tasks

• Processors share a single centralized memory
through a bus interconnect
– Memory contention: Feasible for small # processors

– Caches serve to:
• Increase bandwidth versus

bus/memory

• Reduce latency of access

• Valuable for both private data
and shared data

– Access to shared data is
optimized by replication
• Decreases latency

• Increases memory bandwidth

• Reduces contention

• Reduces cache coherence problems

A cache coherence problem arises when the cache

reflects a view of memory which is different from reality

• A memory system is coherent if:

– P reads X, P writes X, no other processor writes X, P reads X

• Always returns value written by P

– P reads X, Q writes X, P reads X

• Returns value written by Q (provided sufficient W/R separation)

– P writes X, Q writes X

• Seen in the same order by all processors

Time Event
Cache

Contents for
CPU A

Cache
Contents for

CPU B

Memory
Contents for

location X

0 1

1 CPU A reads X 1 1

2 CPU B reads X 1 1 1

3 CPU A stores 0 into X 0 1 0

• Snooping Solution (Snoopy Bus)

– Send all requests for data to all processors

– Processors snoop to see if they have a copy

and respond accordingly

– Requires broadcast, since caching

information is at processors

– Works well with bus (natural broadcast

medium)

– Dominates for small scale machines (most

of the market)

• Directory-Based Schemes

– Keep track of what is being shared in one

centralized place

– Distributed memory ⇒ distributed directory

for scalability (avoids bottlenecks)

– Send point-to-point requests to processors

via network

– Scales better than Snooping

– Actually existed before Snooping-based

schemes

• Write Invalidate Protocol:
– Write to shared data: an invalidate is sent to all caches which

snoop and invalidate any copies

– Cache invalidation will force a cache miss when accessing the
modified shared item

– For multiple writers only one will win the race ensuring
serialization of the write operations

– Read Miss:

• Write-through: memory is always up-to-date

• Write-back: snoop in caches to find most recent copy

Processor activity Bus activity
Contents

of CPU A’s
cache

Contents
of CPU B’s

cache

Contents of
memory

location X

 0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes a 1 to X Invalidation for X 1 0

CPU B reads X Cache miss for X 1 1 1

• Write Broadcast (Update) Protocol (typically write
through):
– Write to shared data: broadcast on bus, processors snoop,

and update any copies

– To limit impact on bandwidth, track data sharing to avoid
unnecessary broadcast of written data that is not shared

– Read miss: memory is always up-to-date

– Write serialization: bus serializes requests!

Processor activity Bus activity
Contents
of CPU

A’s cache

Contents
of CPU

B’s cache

Contents
of memory
location X

 0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes a 1 to X Write broadcast of X 1 1 1

CPU B reads X 1 1 1

• Write-invalidate has emerged as the

winner for the vast majority of designs

• Qualitative Performance Differences :

– Spatial locality

• WI: 1 transaction/cache block;

• WU: 1 broadcast/word

– Latency

• WU: lower write–read latency

• WI: must reload new value to cache

• Because the bus and memory bandwidth

is usually in demand, write-invalidate

protocols are very popular

• Write-update can causes problems for

some memory consistency models,

reducing the potential performance gain

it could bring

• The high demand for bandwidth in write-

update limits its scalability for large

number of processors

