CMSC 611: Advanced
Computer Architecture

Parallel Computation

Most slides adapted from David Patterson. Some from Mohomed Younis



Data Parallel Languages

« SIMD programming
— PE point of view

— Data: shared or per-PE
 What data is distributed?
 What is shared over PE subset
 What data is broadcast with instruction stream?

— Data layout: shape [256][256]d;
— Communication primitives

— Higher-level operations
* Prefix sum: [ijr = > ; [I]d
~1,1,2,3,4 — 1,1+1=2,2+2=4,4+3=7,7+4=11



Single Program Multiple Data

* Many problems do not map well to SIMD
— Better utilization from MIMD or ILP

« Data parallel model = Single Program
Multiple Data (SPMD) model

— All processors execute identical program
— Same program for SIMD, SISD or MIMD
— Compiler handles mapping to architecture



 Message Passing

« Shared memory/distributed memory
— Uniform Memory Access (UMA)
— Non-Uniform Memory Access (NUMA)

Data Data Data
Stream Stream Stream
Processor Processor Processor
Instruction Instruction Instruction

Stream Stream Stream

Can support either SW model on either HW basis




* Processors have private memories,
communicate via messages

* Advantages:

— Less hardware, easier to design

— Focuses attention on costly non-local
operations




Message Passing Model

« Each PE has local processor, data, (I/0)
— Explicit I/0 to communicate with other PEs

— Essentially NUMA but integrated at 1/O vs.
memory system

* Free run between Send & Recelve

— Send + Recelve = Synchronization between
processes (event model)
» Send: local buffer, remote receiving process/port

* Receive: remote sending process/port, local
buffer



History of message passing

« Early machines
— Local communication
— Blocking send & receive

« Later: DMA with non-blocking sends

— DMA for receive into buffer until processor
does receive, and then data Is transferred to
local memory

 Later still: SW libraries to allow arbitrary
communication



Shared Memory

* Processors communicate with shared
address space

» Easy on small-scale machines

* Advantages:

— Model of choice for uniprocessors, small-
scale multiprocessor

— Ease of programming

— Lower latency

— Easier to use hardware controlled caching
— Difficult to handle node failure



Centralized Shared Memory

Processor Processor Processor Processor

One or
more levels
of cache

One or One or One or
more levels more levels more levels
of cache of cache of cache

Main memory 1/O system

*Processors share a single centralized (UMA) memory through
a bus interconnect

*Feasible for small processor count to limit memory contention

*Centralized shared memory architectures are the most
common form of MIMD design



Distributed Memory

Processor
+ cache

Processor
+ cache

Processor
+ cache

Processor
+ cache

Interconnection network

- 11O Memory - 11O Memory 11O

Processor Processor Processor

+ cache + cache + cache

* Uses physically distributed (NUMA) memory to support large
processor counts (to avoid memory contention)

« Advantages

— Allows cost-effective way to scale the memory bandwidth
— Reduces memory latency

* Disadvantage
— Increased complexity of communicating data



Shared Address Model

* Physical locations

— Each PE can name every physical location
In the machine

 Shared data

— Each process can name all data it shares
with other processes



Shared Address Model

o Data transfer

— Use load and store, VM maps to local or remote
location

— Extra memory level: cache remote data

— Significant research on making the translation
transparent and scalable for many nodes
« Handling data consistency and protection challenging

« Latency depends on the underlying hardware architecture
(bus bandwidth, memory access time and support for
address translation)

« Scalability is limited given that the communication model is
so tightly coupled with process address space



Three Fundamental Issues

* 1: Naming: how to solve large problem fast
— what data is shared
— how it is addressed
— what operations can access data
— how processes refer to each other

* Choice of naming affects code produced by a
compiler

— Just remember and load address or keep track of
processor number and local virtual address for
message passing

« Choice of naming affects replication of data

— In cache memory hierarchy or via SW replication
and consistency



Naming Address Spaces

« Global physical address space

— any processor can generate, address and access it
In a single operation

* Global virtual address space

— If the address space of each process can be
configured to contain all shared data of the parallel
program

* memory can be anywhere: virtual address translation
handles it

« Segmented shared address space

— locations are named <process number, address>
uniformly for all processes of the parallel program



Three Fundamental Issues

e 2: Synchronization: To cooperate,
processes must coordinate

— Message passing iIs implicit coordination
with transmission or arrival of data

— Shared address — additional operations to
explicitly coordinate:

e.g., write a flag, awaken a thread, interrupt
a processor



Three Fundamental Issues

« 3: Latency and Bandwidth

— Bandwidth
* Need high bandwidth in communication
« Cannot scale, but stay close
* Match limits in network, memory, and processor
* Overhead to communicate is a problem in many machines

— Latency
 Affects performance, since processor may have to wait

» Affects ease of programming, since requires more thought
to overlap communication and computation

— Latency Hiding
 How can a mechanism help hide latency?

« Examples: overlap message send with computation, pre-
fetch data, switch to other tasks



Centralized Shared Memory
MIMD

* Processors share a single centralized memory
through a bus interconnect
— Memory contention: Feasible for small # processors

— Caches serve to:

* |[ncrease bandwidth versus
bus/memory

* Reduce latency of access
« Valuable for both private data
and shared data
— Access to shared data is
optimized by replication
» Decreases latency
* Increases memory bandwidth
* Reduces contention
* Reduces cache coherence problems




Cache Coherency

A cache coherence problem arises when the cache
reflects a view of memory which is different from reality

Cache Cache Memory
Time Event Contents for | Contents for | Contents for
CPU A CPUB location X
0) 1
1 CPU A reads X 1 1
2 CPU B reads X 1 1 1
3 CPU A stores 0 into X 0) 1 0

A memory system is coherent if:

— P reads X, P writes X, no other processor writes X, P reads X
* Always returns value written by P

— P reads X, Q writes X, P reads X
* Returns value written by Q (provided sufficient W/R separation)

— P writes X, Q writes X

« Seen in the same order by all processors




Potential HW Coherency
Solutions

* Snooping Solution (Snoopy Bus)
— Send all requests for data to all processors

— Processors snoop to see if they have a copy
and respond accordingly

— Requires broadcast, since caching
Information Is at processors

— Works well with bus (natural broadcast
medium)

— Dominates for small scale machines (most
of the market)



Potential HW Coherency
Solutions

* Directory-Based Schemes

— Keep track of what is being shared in one
centralized place

— Distributed memory = distributed directory
for scalability (avoids bottlenecks)

— Send point-to-point requests to processors
via network

— Scales better than Snooping

— Actually existed before Snooping-based
schemes




Basic Snooping Protocols

 Write Invalidate Protocol:

— Write to shared data: an invalidate is sent to all caches which
snoop and invalidate any copies

— Cache invalidation will force a cache miss when accessing the
modified shared item

— For multiple writers only one will win the race ensuring

serialization of the write operations

— Read Miss:
* Write-through: memory is always up-to-date

* Write-back: snoop in caches to find most recent copy

Contents Contents Contents of
Processor activity Bus activity of CPU A’s | of CPUB’s memory

cache cache location X
0
CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0) 0)
CPU A writes a 1 to X Invalidation for X 1 0)
CPU B reads X Cache miss for X 1 1 1




Basic Snooping Protocols

* Write Broadcast (Update) Protocol (typically write

through):

— Write to shared data: broadcast on bus, processors snoop,
and update any copies

— To limit impact on bandwidth, track data sharing to avoid
unnecessary broadcast of written data that is not shared

— Read miss: memory Is always up-to-date

— Write serialization: bus serializes requests!

Contents Contents Contents

Processor activity Bus activity of CPU of CPU of memory

A’s cache | B’s cache | location X
0
CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes a 1 to X | Write broadcast of X 1 1 1
CPU B reads X 1 1 1




Invalidate vs. Update

* Write-invalidate has emerged as the
winner for the vast majority of designs

* Qualitative Performance Differences :

— Spatial locality
« WI: 1 transaction/cache block;
 WU: 1 broadcast/word

— Latency

 WU: lower write—read latency
 WI: must reload new value to cache



Invalidate vs. Update

* Because the bus and memory bandwidth
IS usually in demand, write-invalidate
protocols are very popular

* Write-update can causes problems for
some memory consistency models,
reducing the potential performance gain
It could bring

* The high demand for bandwidth in write-
update limits its scalabllity for large
number of processors



