
Most slides adapted from David Patterson. Some from Mohomed Younis

• Definition: “A parallel computer is a collection
of processing elements that cooperate and
communicate to solve large problems fast.”

– Almasi and Gottlieb, Highly Parallel Computing,
1989

• Parallel machines are expected to have a
bigger role in the future since:

– Microprocessors are likely to remain dominant

– Microprocessor technology is not expected to keep
the pace of performance

– Parallel architectures extend performance

– There has been steady progress in software
development for parallel architectures

•How large a collection?

•How powerful are processing elements?

•How do they cooperate and

communicate?

•How are data transmitted?

•What type of interconnection?

•What are HW and SW primitives for

programmers?

•Does it translate into performance?

• How large a collection?

• How powerful are processing elements?

• How do they cooperate and

communicate?

• How are data transmitted?

• What type of interconnection?

• What are HW and SW primitives for

programmers?

• Does it translate into performance?

• Bit-level parallelism

– ALU parallelism: 1-bit, 4-bits, 8-bit, ...

• Instruction-level parallelism (ILP)

– Pipelining, Superscalar, VLIW, Out-of-Order

execution

• Process/Thread-level parallelism

– Divide job into parallel tasks

• Job-level parallelism

– Independent jobs on one computer system

App Perf
(GFLOPS)

Memory
(GB)

48 hour weather 0.1 0.1

72 hour weather 3 1

Pharmaceutical
design 100 10

Global Change,
Genome 1000 1000

• Scientific Computing

– Nearly Unlimited Demand (Grand Challenge):

– Successes in some real industries:

• Petroleum: reservoir modeling

• Automotive: crash simulation, drag analysis, engine

• Aeronautics: airflow analysis, engine, structural mechanics

• Pharmaceuticals: molecular modeling

• Transaction processing

• File servers

• Electronic CAD simulation

• Large WWW servers

• WWW search engines

• Graphics

– Graphics hardware

– Render Farms

• Extend traditional computer architecture with a
communication architecture
– abstractions (HW/SW interface)

– organizational structure to realize abstraction
efficiently

• Programming Model:
– Multiprogramming: lots of jobs, no communication

– Shared address space: communicate via memory

– Message passing: send and receive messages

– Data Parallel: several agents operate on several
data sets simultaneously and then exchange
information globally and simultaneously (shared or
message passing)

• Shared address space:

– e.g., load, store, atomic swap

• Message passing:

– e.g., send, receive library calls

• Debate over this topic (ease of

programming, scaling)

– many hardware designs 1:1 programming

model

• Flynn Categories

– SISD (Single Instruction Single Data)

– MISD (Multiple Instruction Single Data)

– SIMD (Single Instruction Multiple Data)

– MIMD (Multiple Instruction Multiple Data)

• Uniprocessor

• No commercial examples

• Different operations to a single data set

– Find primes

– Crack passwords

• Vector/Array computers

• Performance keys

– Utilization

– Communication

• Operations performed in parallel on each
element of a large regular data structure, such
as an array

– One Control Processor broadcast to many
processing elements (PE) with condition flag per
PE so that can skip

• For distributed memory architecture data is
distributed among memories
– Data parallel model requires fast global

synchronization

– Data parallel programming languages lay out data
to processor

– Vector processors have similar ISAs, but no data
placement restriction

• Conditional Execution

– PE Enable

• if (f<.5) {...}

– Global enable check

• while (t > 0) {...}

• Fast local X-net

• Slow global routing

• Hypercube local routing

• Wormhole global routing

• Dense connections within block
– Single swizzle operation collects one word from

each PE in block
• Designed for antialiasing

– NO inter-block connection

– NO global routing

