
Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides

Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

• All data in computer systems is represented in binary

• Instructions are no exception

• The program that translates the human-readable code
to numeric form is called an Assembler

• Hence machine-language or assembly-language

Example:

 Assembly: ADD $t0, $s1, $s2

 Note: by default MIPS $t0..$t7 map to reg. 8..15, $s0..$s7 map to reg. 16-23

$t0, $s1, $s2

0x0 0x11 0x12 0x8 0x020

$s1 $s2 $t0 ADD

000000 10001 10010 01000 00000100000

M/C language (hex):

M/C language (hex by field):

M/C language (binary):

0x02324020

• Affects the size of the compiled program

• Also complexity of the CPU implementation

• Operation in one field called opcode

• Addressing mode in opcode or separate field

• Must balance:
– Desire to support as many registers and addressing modes as

possible

– Effect of operand specification on the size of the instruction
(and program)

– Desire to simplify instruction fetching and decoding during
execution

• Fixed size instruction encoding simplifies CPU design
but limits addressing choices

opcodes
 000 001 010 011 100 101 110 111

000 R-type j jal beq bne blez bgtz

001 addi addiu slti sltiu andi ori xori

010

011 llo lhi trap

100 lb lh lw lbu lhu

101 sb sh sw

110

111

funct codes
 000 001 010 011 100 101 110 111

000 sll srl sra sllv srlv srav

001 jr jalr

010 mfhi mthi mflo mtlo

011 mult multu div divu

100 add addu sub subu and or xor nor

101 slt sltu

110

111

• Data

– IEEE-like floating point

– 4-element vectors

• Most instructions perform operation on all four

• Addressing

– No addresses

– ATTRIB, PARAM, TEMP, OUTPUT

– Limited arrays

– Element selection (read & write)

• C.xyw, C.rgba

• Instructions:
Instruction Operation Instruction Operation

ABS r,s r = abs(s) MIN r,s1,s2 r = min(s1,s2)
ADD r,s1,s2 r = s1+s2 MOV r,s1 r = s1
CMP r,c,s1,s2 r = c<0 ? s1 : s2 MUL r,s1,s2 r = s1*s2
COS r,s r = cos(s) POW r,s1,s2 r s1s2

DP3 r,s1,s2 r = s1.xyz • s2.xyz RCP r,s1 r = 1/s1
DP4 r,s1,s2 r = s1 • s2 RSQ r,s1 r = 1/sqrt(s1)
DPH r,s1,s2 r = s1.xyz1 • s2 SCS r,s1 r = (cos(s),sin(s),?,?)
DST r,s1,s2 r = (1,s1.y*s2.y,s1.z,s2.w) SGE r,s1,s2 r = s1 s2 ? 1 : 0

EX2 r,s r 2s SIN r,s r = sin(s)
FLR r,s r = floor(s) SLT r,s1,s2 r = s1<s2 ? 1 : 0
FRC r,s r = s - floor(s) SUB r,s1,s2 r = s1-s2
KIL s if (s<0) discard SWZ r,s,cx,cy,cz,cw r = swizzle(s)

LG2 r,s r log2(s) TEX r,s,name,nD r = texture(s)
LIT r,s r = lighting computation TXB r,s,name,nD r = textureLOD(s)
LRP r,t,s1,s2 r = t*s1 + (1-t)*s2 TXP r,s,name,nD r = texture(s/s.w)
MAD r,s1,s2,s3 r = s1*s2 + s3 XPD r,s1,s2 r = s1 s2

MAX r,s1,s2 r = max(s1,s2)

• Notable:

– Many special-purpose instructions

– No binary encoding, interface is text form

• No ISA limits on future expansion

• No ISA limits on registers

• No ISA limits on immediate values

– Originally no branching! (exists now)

• Washer takes 30 min, Dryer takes 40 min, folding takes 20 min

• Sequential laundry takes 6 hours for 4 loads

• If they learned pipelining, how long would laundry take?

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

Slide: Dave Patterson

Time

A

B

C

D

T

a
s

k

O

r
d

e
r

• Pipelining means start work as soon as possible

• Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T

a
s

k

O

r
d

e
r

Time

30 40 40 40 40 20

Slide: Dave Patterson

• Pipelining doesn’t help latency of single

task, it helps throughput of entire

workload

• Pipeline rate limited by slowest pipeline

stage

• Multiple tasks operating simultaneously

using different resources

• Potential speedup = Number pipe

stages

• Unbalanced lengths of pipe stages

reduces speedup

• Time to “fill” pipeline and time to “drain”

it reduce speedup

• Stall for Dependencies

Time

6 PM 7 8 9

Slide: Dave Patterson

A

B

C

D

T

a
s

k

O

r
d

e
r

30 40 40 40 40 20

op target address

0 26 31

6 bits 26 bits

op rs rt rd shamt funct

0 6 11 16 21 26 31

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

op rs rt immediate

0 16 21 26 31

6 bits 16 bits 5 bits 5 bits

• RISC characterized by the following
features that simplify implementation:

– All ALU operations apply only on registers

– Memory is affected only by load and store

– Instructions follow very few formats and
typically are of the same size

 Figure: Dave Patterson

Instruction fetch cycle (IF)

 IR Mem[PC]; NPC PC + 4

Instruction decode/register fetch cycle (ID)

 A Regs[IR6..10]; B Regs[IR11..15]; Imm ((IR16)
16 ##IR16..31)

Execution/effective address cycle (EX)

 Memory ref: ALUOutput A + Imm;

Reg-Reg ALU: ALUOutput A func B;

Reg-Imm ALU: ALUOutput A op Imm;

Branch: ALUOutput NPC + Imm; Cond (A op 0)

Memory access/branch completion cycle (MEM)

Memory ref: LMD Mem[ALUOutput] or Mem(ALUOutput] B;

Branch: if (cond) PC ALUOutput;

Write-back cycle (WB)

Reg-Reg ALU: Regs[IR16..20] ALUOutput;

Reg-Imm ALU: Regs[IR11..15] ALUOutput;

Load: Regs[IR11..15] LMD;

Figure: Dave Patterson

• The load instruction is the longest

• All instructions follows at most the following five steps:

– Ifetch: Instruction Fetch

• Fetch the instruction from the Instruction Memory and update PC

– Reg/Dec: Registers Fetch and Instruction Decode

– Exec: Calculate the memory address

– Mem: Read the data from the Data Memory

– WB: Write the data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WB
Load

Slide: Dave Patterson

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB
Program Flow

Time

 Pipelining improves performance by increasing instruction throughput

• Start handling next instruction while the current
instruction is in progress

• Feasible when different devices at different stages

Time between instructionspipelined =
Time between instructionsnonpipelined

Number of pipe stages

Ideal and upper bound for speedup is number of stages in the pipeline

Instruction
fetch

Reg ALU
Data

access
Reg

8 ns
Instruction

fetch
Reg ALU

Data
access

Reg

8 ns
Instruction

fetch

8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program
execution
order
(in instructions)

Instruction
fetch

Reg ALU
Data

access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction

fetch
Reg ALU

Data

access
Reg

2 ns
Instruction

fetch
Reg ALU

Data
access

Reg

2 ns 2 ns 2 ns 2 ns 2 ns

Program
execution
order
(in instructions)

Time between first
& fourth instructions
is 3 2 = 6 ns

Time between first
& fourth instructions
is 3 8 = 24 ns

Clk

Load Store Waste

Cycle 1 Cycle 2

Figure: Dave Patterson

• Cycle time long enough for longest instruction

• Shorter instructions waste time

• No overlap

Figure: Dave Patterson

• Cycle time long enough for longest stage

• Shorter stages waste time

• Shorter instructions can take fewer cycles

• No overlap

Cycle 1

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Ifetch Reg Exec Mem

Load Store

Ifetch

R-type

Clk

Figure: Dave Patterson

• Cycle time long enough for longest stage

• Shorter stages waste time

• No additional benefit from shorter instructions

• Overlap instruction execution

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Clk

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec Mem Wr Store

Ifetch Reg Exec Mem Wr R-type

• Pipeline increases the instruction throughput
– not execution time of an individual instruction

• An individual instruction can be slower:
– Additional pipeline control

– Imbalance among pipeline stages

• Suppose we execute 100 instructions:
– Single Cycle Machine

• 45 ns/cycle x 1 CPI x 100 inst = 4500 ns

– Multi-cycle Machine
• 10 ns/cycle x 4.2 CPI (due to inst mix) x 100 inst = 4200 ns

– Ideal 5 stages pipelined machine
• 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

• Lose performance due to fill and drain

Data Stationary

• Every stage must be completed in one clock cycle to avoid stalls

• Values must be latched to ensure correct execution of
instructions

• The PC multiplexer has moved to the IF stage to prevent two
instructions from updating the PC simultaneously (in case of
branch instruction)

Stage Any Instruction

IF
IF/ID.IR MEM[PC] ;

IF/ID.NPC,PC (if ((EX/MEM.opcode == branch) & EX/MEM.cond)

{EX/MEM.ALUOutput } else { PC + 4 }) ;

ID
ID/EX.A = Regs[IF/ID. IR 6..10]; ID/EX.B Regs[IF/ID. IR 11..15];

ID/EX.NPC IF/ID.NPC ; ID/EX.IR IF/ID.IR;

ID/EX.Imm (IF/ID. IR 16)
 16

 ## IF/ID. IR 16..31;

ALU Load or Store Branch

EX

EX/MEM.IR = ID/EX.IR;

EX/MEM. ALUOutput
ID/EX.A func ID/EX.B;

Or

EX/MEM.ALUOutput
ID/EX.A op ID/EX.Imm;

EX/MEM.cond 0;

EX/MEM.IR ID/EX.IR;

EX/MEM.ALUOutput
ID/EX.A + ID/EX.Imm;

EX/MEM.cond 0;

EX/MEM.B ID/EX.B;

EX/MEM.ALUOutput
ID/EX.NPC + ID/EX.Imm;

EX/MEM.cond
(ID/EX.A op 0);

MEM

MEM/WB.IR EX/MEM.IR;

MEM/WB.ALUOutput
EX/MEM.ALUOutput;

MEM/WB.IR EX/MEM.IR;

MEM/WB.LMD
Mem[EX/MEM.ALUOutput] ;

Or

Mem[EX/MEM.ALUOutput]
EX/MEM.B ;

WB

Regs[MEM/WB. IR 16..20]
EM/WB.ALUOutput;

Or

Regs[MEM/WB. IR 11..15]
MEM/WB.ALUOutput ;

For load only:

Regs[MEM/WB. IR 11..15]
MEM/WB.LMD;

• Cases that affect instruction execution
semantics and thus need to be detected and corrected

• Hazards types
– Structural hazard: attempt to use a resource two different

ways at same time
• Single memory for instruction and data

– Data hazard: attempt to use item before it is ready
• Instruction depends on result of prior instruction still in the

pipeline

– Control hazard: attempt to make a decision before condition is
evaluated
• branch instructions

• Hazards can always be resolved by waiting

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Slide: David Culler

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

DMem

Structural Hazard

Slide: David Culler

1. Wait

– Must detect the hazard

• Easier with uniform ISA

– Must have mechanism to stall

• Easier with uniform pipeline organization

2. Throw more hardware at the problem

– Use instruction & data cache rather than
direct access to memory

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Reg A
L
U

DMem Ifetch Reg

Bubble Bubble Bubble Bubble Bubble

Slide: David Culler

Pipelining Speedup =
Average instruction time unpipelined

Average instruction time pipelined

=
CPI unpipelined

CPI pipelined

Clock cycle unpipelined

Clock cycle pipelined

Speedup =
CPI unpipelined

1 + Pipeline stall cycles per instruction

Clock cycle unpipelined

Clock cycle pipelined

CPI pipelined = Ideal CPI+Pipeline stall cycles per instruction

=1+Pipeline stall cycles per instruction

 Ideal CPI pipelined =1

Speedup =
Pipeline depth

1 + Pipeline stall cycles per instruction

Assuming all pipeline stages are balanced

