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• All data in computer systems is represented in binary 

• Instructions are no exception 

• The program that translates the human-readable code 
to numeric form is called an Assembler 

• Hence machine-language or assembly-language 

Example: 

  Assembly:    ADD $t0, $s1, $s2 

 Note: by default MIPS $t0..$t7 map to reg. 8..15, $s0..$s7 map to reg. 16-23 

$t0, $s1, $s2 

0x0 0x11 0x12 0x8 0x020 

$s1 $s2 $t0 ADD 

000000 10001 10010 01000 00000100000 

M/C language (hex): 

M/C language (hex by field): 

M/C language (binary): 

0x02324020 



• Affects the size of the compiled program 

• Also complexity of the CPU implementation 

• Operation in one field called opcode 

• Addressing mode in opcode or separate field 

• Must balance: 
– Desire to support as many registers and addressing modes as 

possible 

– Effect of operand specification on the size of the instruction 
(and program) 

– Desire to simplify instruction fetching and decoding during 
execution 

• Fixed size instruction encoding simplifies CPU design 
but limits addressing choices 





opcodes
 000 001 010 011 100 101 110 111

000 R-type  j jal beq bne blez bgtz

001 addi addiu slti sltiu andi ori xori  

010         

011 llo lhi trap      

100 lb lh  lw lbu lhu   

101 sb sh  sw     

110         

111         

funct codes
 000 001 010 011 100 101 110 111

000 sll  srl sra sllv  srlv srav

001 jr jalr       

010 mfhi mthi mflo mtlo     

011 mult multu div divu     

100 add addu sub subu and or xor nor

101   slt sltu     

110         

111         



• Data 

– IEEE-like floating point 

– 4-element vectors 

• Most instructions perform operation on all four 

• Addressing 

– No addresses 

– ATTRIB, PARAM, TEMP, OUTPUT 

– Limited arrays 

– Element selection (read & write) 

• C.xyw, C.rgba 



• Instructions: 
Instruction Operation Instruction Operation 

ABS r,s r = abs(s) MIN r,s1,s2 r = min(s1,s2) 
ADD r,s1,s2 r = s1+s2 MOV r,s1 r = s1 
CMP r,c,s1,s2 r = c<0 ? s1 : s2 MUL r,s1,s2 r = s1*s2 
COS r,s r = cos(s) POW r,s1,s2 r  s1s2 

DP3 r,s1,s2 r = s1.xyz • s2.xyz RCP r,s1 r = 1/s1 
DP4 r,s1,s2 r = s1 • s2 RSQ r,s1 r = 1/sqrt(s1) 
DPH r,s1,s2 r = s1.xyz1 • s2 SCS r,s1 r = (cos(s),sin(s),?,?) 
DST r,s1,s2 r = (1,s1.y*s2.y,s1.z,s2.w) SGE r,s1,s2 r = s1 s2 ? 1 : 0 

EX2 r,s r  2s SIN r,s r = sin(s) 
FLR r,s r = floor(s) SLT r,s1,s2 r = s1<s2 ? 1 : 0 
FRC r,s r = s - floor(s) SUB r,s1,s2 r = s1-s2 
KIL s if (s<0) discard SWZ r,s,cx,cy,cz,cw r = swizzle(s) 

LG2 r,s r  log2(s) TEX r,s,name,nD r = texture(s) 
LIT r,s r = lighting computation TXB r,s,name,nD r = textureLOD(s) 
LRP r,t,s1,s2 r = t*s1 + (1-t)*s2 TXP r,s,name,nD r = texture(s/s.w) 
MAD r,s1,s2,s3 r = s1*s2 + s3 XPD r,s1,s2 r = s1 s2 

MAX r,s1,s2 r = max(s1,s2)   

 



• Notable: 

– Many special-purpose instructions 

– No binary encoding, interface is text form 

• No ISA limits on future expansion 

• No ISA limits on registers 

• No ISA limits on immediate values 

– Originally no branching! (exists now) 



•  Washer takes 30 min, Dryer takes 40 min, folding takes 20 min 

•  Sequential laundry takes 6 hours for 4 loads 

•  If they learned pipelining, how long would laundry take?  

30 40 20 30 40 20 30 40 20 30 40 20 

6 PM 7 8 9 10 11 Midnight 
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•  Pipelining means start work as soon as possible 

•  Pipelined laundry takes 3.5 hours for 4 loads  
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•  Pipelining doesn’t help latency of single 

task, it helps throughput of entire 

workload 

•  Pipeline rate limited by slowest pipeline 

stage 

•  Multiple tasks operating simultaneously 

using different resources 

•  Potential speedup = Number pipe 

stages 

•  Unbalanced lengths of pipe stages 

reduces speedup 

•  Time to “fill” pipeline and time to “drain” 

it reduce speedup 

•  Stall for Dependencies 

Time 

6 PM 7 8 9 
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op target address 

0 26 31 

6 bits 26 bits 

op rs rt rd shamt funct 

0 6 11 16 21 26 31 

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 

op rs rt immediate 

0 16 21 26 31 

6 bits 16 bits 5 bits 5 bits 

• RISC characterized by the following 
features that simplify implementation: 

– All ALU operations apply only on registers  

– Memory is affected only by load and store 

– Instructions follow very few formats and 
typically are of the same size 



  Figure: Dave Patterson 



Instruction fetch cycle (IF) 

 IR  Mem[PC];    NPC  PC + 4 

Instruction decode/register fetch cycle (ID) 

 A  Regs[IR6..10];        B  Regs[IR11..15];        Imm  ((IR16)
16 ##IR16..31) 

Execution/effective address cycle (EX) 

 Memory ref:   ALUOutput  A + Imm; 

Reg-Reg ALU:  ALUOutput  A func B; 

Reg-Imm ALU:  ALUOutput  A op Imm; 

Branch:   ALUOutput  NPC + Imm;       Cond  (A op 0) 

Memory access/branch completion cycle (MEM) 

Memory ref:    LMD  Mem[ALUOutput]    or    Mem(ALUOutput]  B; 

Branch:    if (cond) PC ALUOutput; 

Write-back cycle (WB) 

Reg-Reg ALU:  Regs[IR16..20]  ALUOutput; 

Reg-Imm ALU:  Regs[IR11..15]  ALUOutput; 

Load:   Regs[IR11..15]  LMD; 



          
Figure: Dave Patterson 



•  The load instruction is the longest 

•  All instructions follows at most the following five steps: 

–  Ifetch:  Instruction Fetch 

•  Fetch the instruction from the Instruction Memory and update PC 

–  Reg/Dec: Registers Fetch and Instruction Decode 

–  Exec:  Calculate the memory address 

–  Mem:  Read the data from the Data Memory 

–  WB:  Write the data back to the register file 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 

Ifetch Reg/Dec Exec Mem WB 
Load 

Slide: Dave Patterson 



IFetch Dec Exec Mem WB 

IFetch Dec Exec Mem WB 

IFetch Dec Exec Mem WB 

IFetch Dec Exec Mem WB 

IFetch Dec Exec Mem WB 

IFetch Dec Exec Mem WB 
Program Flow 

Time 

 Pipelining improves performance by increasing instruction throughput 

• Start handling next instruction while the current 
instruction is in progress 

• Feasible when different devices at different stages 

Time between instructionspipelined =
Time between instructionsnonpipelined

Number of pipe stages



Ideal and upper bound for speedup is number of stages in the pipeline 
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• Cycle time long enough for longest instruction 

• Shorter instructions waste time 

• No overlap 



Figure: Dave Patterson 

• Cycle time long enough for longest stage 

• Shorter stages waste time 

• Shorter instructions can take fewer cycles 

• No overlap 
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Figure: Dave Patterson 

• Cycle time long enough for longest stage 

• Shorter stages waste time 

• No additional benefit from shorter instructions 

• Overlap instruction execution 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 

Clk 

Load Ifetch Reg Exec Mem Wr 

Ifetch Reg Exec Mem Wr Store 

Ifetch Reg Exec Mem Wr R-type 



• Pipeline increases the instruction throughput 
– not execution time of an individual instruction 

• An individual instruction can be slower:  
– Additional pipeline control 

– Imbalance among pipeline stages 

• Suppose we execute 100 instructions: 
–  Single Cycle Machine 

• 45 ns/cycle  x 1 CPI x 100 inst = 4500 ns 

–  Multi-cycle Machine 
• 10 ns/cycle x 4.2 CPI (due to inst mix) x 100 inst = 4200 ns 

–  Ideal 5 stages pipelined machine 
• 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns 

• Lose performance due to fill and drain 



Data Stationary 

• Every stage must be completed in one clock cycle to avoid stalls 

• Values must be latched to ensure correct execution of 
instructions 

• The PC multiplexer has moved to the IF stage to prevent two 
instructions from updating the PC simultaneously (in case of 
branch instruction) 



Stage Any Instruction

IF
IF/ID.IR MEM[PC] ;

IF/ID.NPC,PC  ( if ( (EX/MEM.opcode == branch) & EX/MEM.cond)

{EX/MEM.ALUOutput } else { PC + 4 } ) ;

ID
ID/EX.A = Regs[IF/ID. IR 6..10]; ID/EX.B Regs[IF/ID. IR 11..15];

ID/EX.NPC IF/ID.NPC ; ID/EX.IR IF/ID.IR;

ID/EX.Imm  (IF/ID. IR 16)
 16

 ## IF/ID. IR 16..31;

ALU Load or Store Branch

EX

EX/MEM.IR = ID/EX.IR;

EX/MEM. ALUOutput 
ID/EX.A func ID/EX.B;

Or

EX/MEM.ALUOutput 
ID/EX.A op ID/EX.Imm;

EX/MEM.cond  0;

EX/MEM.IR  ID/EX.IR;

EX/MEM.ALUOutput 
ID/EX.A + ID/EX.Imm;

EX/MEM.cond  0;

EX/MEM.B ID/EX.B;

EX/MEM.ALUOutput 
ID/EX.NPC + ID/EX.Imm;

EX/MEM.cond 
(ID/EX.A op 0);

MEM

MEM/WB.IR EX/MEM.IR;

MEM/WB.ALUOutput 
EX/MEM.ALUOutput;

MEM/WB.IR  EX/MEM.IR;

MEM/WB.LMD 
Mem[EX/MEM.ALUOutput] ;

Or

Mem[EX/MEM.ALUOutput] 
EX/MEM.B ;

WB

Regs[MEM/WB. IR 16..20] 
EM/WB.ALUOutput;

Or

Regs[MEM/WB. IR 11..15] 
MEM/WB.ALUOutput ;

For load only:

Regs[MEM/WB. IR 11..15] 
MEM/WB.LMD;



• Cases that affect instruction execution                     
semantics and thus need to be detected and corrected 

• Hazards types 
– Structural hazard: attempt to use a resource two different 

ways at same time 
• Single memory for instruction and data 

– Data hazard: attempt to use item before it is ready 
• Instruction depends on result of prior instruction still in the 

pipeline 

– Control hazard: attempt to make a decision before condition is 
evaluated 
• branch instructions 

• Hazards can always be resolved by waiting 



I 
n 
s 
t 
r. 

O 
r 
d 
e 
r 

Time (clock cycles) 

Reg A
L
U
 

DMem Ifetch Reg 

Reg A
L
U
 

DMem Ifetch Reg 

Reg A
L
U
 

DMem Ifetch Reg 

Reg A
L
U
 

DMem Ifetch Reg 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5 

Slide: David Culler 



I 
n 
s 
t 
r. 

O 
r 
d 
e 
r 

Time (clock cycles) 

Load 

Instr 1 

Instr 2 

Instr 3 

Instr 4 

Reg A
L
U
 

DMem Ifetch Reg 

Reg A
L
U
 

DMem Ifetch Reg 

Reg A
L
U
 

DMem Ifetch Reg 

Reg A
L
U
 

DMem Ifetch Reg 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5 

DMem 

Structural Hazard 

Slide: David Culler 



1. Wait 

– Must detect the hazard 

• Easier with uniform ISA 

– Must have mechanism to stall 

• Easier with uniform pipeline organization 

2. Throw more hardware at the problem 

– Use instruction & data cache rather than 
direct access to memory 
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Pipelining Speedup =
Average instruction time unpipelined

Average instruction time pipelined

=
CPI unpipelined

CPI pipelined

Clock cycle unpipelined

Clock cycle pipelined

Speedup  =
CPI unpipelined

1 +  Pipeline stall cycles per instruction

Clock cycle unpipelined

Clock cycle pipelined

  

CPI pipelined = Ideal CPI+Pipeline stall cycles per instruction

=1+Pipeline stall cycles per instruction

  Ideal CPI pipelined =1

Speedup  =
Pipeline depth

1 +  Pipeline stall cycles per instruction

Assuming all pipeline stages are balanced 


