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Levels of Behavior
Representation

High Level Language temp = v[K];
Program VK] = v[k+1];
Compiler vlk+1] = temp;
Assembly Language Iw $15, O($2)
Program Iw $16, 4(%2)
rccomp, sw  $16, 0($2)
ssembler SW $15. 4($2)
Machine Language 0000 1001 1100 0110 1010 1111 0101 1000
Program 1010 1111 0101 1000 0000 1001 1100 0110

e e 1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Machine Interpretation

Control Signal
Specification ALUOPI[0:3] <= InstReg[9:11] & MASK

(o]
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Levels of Abstraction

« S/W and H/W consists of hierarchical layers of abstraction,
each hides detalls of lower layers from the above layer

e The instruction set arch. abstracts the H/W and S/W
interface and allows many implementation of varying cost
and performance to run the same S/W
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Forces on Computer
Architecture

* Programming languages might encourage architecture
features to improve performance and code size, e.g. Fortran
and Java

* Operating systems rely on the hardware to support essential
features such as semaphores and memory management

* Technology always raises the bar for what could be done and
changes design’s focus

« Applications usually derive capabilities and constrains
» History provides the starting point, filters out mistakes
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Technology - dramatic change

* Processor
— logic capacity: about 30% increase per year

— clock rate: about 20% increase per year
Higher logic density gave room for instruction pipeline & cache
«  Memory
— DRAM capacity: about 60% increase per year
(4x | 3 years)
— Memory speed: about 10% increase per year

— Cost per bit: about 25% improvement per year
Performance optimization no longer implies smaller programs
« Disk
— Capacity: about 60% Iincrease per year
Computers became lighter and more power efficient



Transistors

Technology Impact
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Performance

Processor Performance (SPEC)
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Relative Performance

Processor Performance (SPEC)

1600 r

1500

1400

1300

1200 F

1100

1000

900

800

700

600

500 F

400

300 f

200 F

100 F

Intel

Pentium if
.
1.58x per year ,
Architectu re+\f’/‘
Technology
HP |
9000 /
i
/
///
/ '/‘/
DEC /
Alpha /
Va
//
/ Technology
IBM DEC 1.35x per year
Fh%ggoso Power1
= e :l— — .'—".—_-/ : : . . . : . N : ;
\Q%h \‘ég) -9@ \‘fp '9& '@qh \C’Pb ’3& @@

Relying on technology alone would have kept us 8 years behind



Transistors

One Architectural Factor

Bit-level parallelism Instruction-level Thread-level
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Kbit capacity

Technology Impact on Design

DRAM capacity 4x / 3 yrs; 16,000x in 20 yrs!
Programming concern: cache not RAM size

Processor organization becoming main focus for performance
optimization
HW designer focus not only performance but functional

Integration and power consumption (e.g. system on a chip)
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Computer Engineering

Implementation
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Cost and performance are the main evaluation metrics for a design quality



Integrated Circuits: Fueling

Innovation
Chips begins with silicon, found in sand

Silicon does not conduct electricity well and
thus called semiconductor

A special chemical process can transform tiny

areas of silicon to either:

— Excellent conductors of electricity (like copper)

— Excellent insulator from electricity (like glass)

— Areas that can conduct or insulate under a special
condition (a switch)

A transistor is simply an on/off switch

controlled by electricity

Integrated circuits combines dozens of
hundreds of transistors in a chip



Integrated Circuits: Fueling

innovation
* Technology innovations over time

Year | Technology used in computers | Relative performance/unit cost
1951 |Vacuum tube 1

1965 | Transistor 35

1975 | Integrated circuits 900

1995 |Very large-scale integrated circuit 2,400,000

Advances of the IC technology affect H/W and S/W design philosophy



Microelectronics Process

Silicon Ingot
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« Silicon ingots:
— 6-12 inches in diameter and about 12-24 inches long

* Impurities in the wafer can lead to defective devices
and reduces the yield



Integrated Circuits Costs

m x (Wafer_diameter/2)° m x Wafer_Diameter
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