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Pipeline exceptions must follow order of execution of faulting 

instructions not according to the time they occur 

• Multiple exceptions might occur since multiple instructions are 

executing 

– (LW followed by DIV might cause page fault and an arith. exceptions 

in same cycle)  

• Exceptions can even occur out of order 

– IF page fault before preceeding MEM page fault 

Pipeline Stage Problem exceptions occurring

IF
Page fault on instruction fetch; misaligned
memory access; memory protection
violation

ID Undefined or illegal opcode

EX Arithmetic exception

MEM
Page fault on data fetch; misaligned
memory access; memory protection
violation

WB None



• Some exceptions require restart of 

instruction 

– e.g. Page fault in MEM stage 

• When exception occurs, pipeline control 

can: 

– Force a trap instruction into next IF stage 

– Until the trap is taken, turn off all writes for 

the faulting (and later) instructions 

– OS exception-handling routine saves 

faulting instruction PC 



• Precise exceptions 
– Instructions before the faulting one complete 

– Instructions after it restart 

– As if execution were serial 

• Exception handling complex if faulting 
instruction can change state before exception 
occurs 

• Precise exceptions simplifies OS  

• Required for demand paging 



• The MIPS Approach: 
– Hardware posts all exceptions caused by a given instruction in 

a status vector associated with the instruction 

– The exception status vector is carried along as the instruction 
goes down the pipeline 

– Once an exception indication is set in the exception status 
vector, any control signal that may cause a data value to be 
written is turned off 

– Upon entering the WB stage the exception status vector is 
checked and the exceptions, if any, will be handled according 
the time they occurred 

– Allowing an instruction to continue execution till the WB stage 
is not a problem since all write operations for that instruction 
will be disallowed 



• Precise exceptions 
– Instructions before the faulting one complete 

– Instructions after it restart 

– As if execution were serial 

• Exception handling complex if faulting 
instruction can change state before exception 
occurs 

• Precise exceptions simplifies OS  

• Required for demand paging 



• Early-Write Instructions 
– MIPS only writes late in pipeline  

– Machines with multiple writes usually require 
capability to rollback the effect of an instruction 
• e.g. VAX auto-increment, 

– Instructions that update memory state during 
execution, e.g. string copy, may need to save & 
restore temporary registers 

• Branching mechanisms 
– Complications from condition codes, predictive 

execution for exceptions prior to branch 

• Variable, multi-cycle operations 
– Instruction can make multiple writes 



• Impractical for FP 

ops to complete in 

one clock   

– (complex logic and/or 

very long clock cycle) 

• More complex 

hazards 

– Structural 

– Data 



Non-pipelined DIV 

operation stalling 
the whole pipeline 

for 24 cycles 
3-stage pipelined FP 

addition 

Integer ALU 7-stage pipelined FP 

multiply 

Example: blue indicate where data is needed and red when result is available 

MULTD IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

ADDD IF ID A1 A2 A3 A4 MEM WB

LD IF ID EX MEM WB

SD IF ID EX MEM WB



• Latency: cycles between instruction that produces result and 
instruction that uses it 

– Since most operations consume their operands at the beginning of 
the EX stage, latency is usually number of the stages of the EX an 
instruction uses 

• Long latency increases the frequency of RAW hazards 

• Initiation (Repeat) interval: cycles between issuing two operations 
of a given type 

Functional unit Latency Initiation interval 

Integer ALU 0 1 

Data memory (integer and FP loads) 1 1 

FP add 3 1 

FP multiply (also integer multiply) 6 1 

FP divide (also integer divide) 24 25 

 



Example of RAW hazard caused by the long latency 

• Non-pipelined divide causes structural hazards 

• Number of register writes required in a cycle can be larger than 1 

• WAW hazards are possible 

– Instructions no longer reach WB in order 

• WAR hazards are NOT possible 

– Register reads are still taking place during the ID stage 

• Instructions can complete out of order 

– Complicates exceptions 

• Longer latency makes RAW stalls more frequent 

Clock cycle number 
Instruction 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

LD F4, 0(R2) IF ID EX MEM WB             

MULTD F0, F4, F6  IF ID stall M1 M2 M3 M4 M5 M6 M7 MEM WB     

ADDD F2, F0, F8   IF stall ID stall stall stall stall stall stall A1 A2 A3 A4 MEM WB 

SD 0(R2), F2     IF stall stall stall stall stall stall ID EX stall stall stall MEM 

 



 

Clock cycle number 
Instruction 

1 2 3 4 5 6 7 8 9 10 11 

MULTD F0, F4, F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB 

…  IF ID EX MEM WB      

…   IF ID EX MEM WB     

ADDD F2, F4, F6    IF ID A1 A2 A3 A4 MEM WB 

…     IF ID EX MEM WB   

…      IF ID EX MEM WB  

LD F2, 0(R2)       IF ID EX MEM WB 

• At cycle 10, MULTD, ADDD and LD instructions all in MEM 

• At cycle 11, MULTD, ADDD and LD instructions all in WB  

– Additional write ports are not cost effective since they are rarely used 

• Instead 

– Detect at ID and stall 

– Detect at MEM or WB and stall 



 

Clock cycle number 
Instruction 

1 2 3 4 5 6 7 8 9 10 11 

MULTD F0, F4, F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB 

…  IF ID EX MEM WB      

…   IF ID EX MEM WB     

ADDD F2, F4, F6    IF ID A1 A2 A3 A4 MEM WB 

…     IF ID EX MEM WB   

LD F2, 0(R2)      IF ID EX MEM WB  

….       IF ID EX MEM WB 

• WAW hazards can be corrected by either: 
– Stalling the latter instruction at MEM until it is safe 

– Preventing the first instruction from overwriting the register  

• Correcting at cycle 11 OK unless intervening RAW/use of F2 

• WAW hazards can be detected at the ID stage 

– Convert 1st instruction to no-op  

• WAW hazards are generally very rare, designers usually go with the 
simplest solution 



• Hazards among FP instructions & and combined FP and integer 
instructions 

• Separate int & fp register files limits latter to FP load and store 
instructions 

• Assuming all checks are to be performed in the ID phase: 

– Check for structural hazards: 
• Wait if the functional unit is busy (Divides in our case) 

• Make sure the register write port is available when needed 

– Check for a RAW data hazard 
• Requires knowledge of latency and initiation interval to decide when to 

forward and when to stall  

– Check for a WAW data hazard 

• Write completion has to be estimated at the ID stage to check with other 
instructions in the pipeline 

• Data hazard detection and forwarding logic from values stored 
between the stages 



• Pipelining FP instructions can cause out-

of-order completion 

• Exceptions also a problem: 

DIVF F0, F2, F4

ADDF F10, F10, F8

SUBF F12, F12, F14

– No data hazards 

– What if DIVF exception occurs after ADDF 

writes F10?  



1. Settle for imprecise exceptions 

– Some supercomputers still uses this approach 

– IEEE floating point standard requires precise exceptions 

– Some machine offer slow precise and fast imprecise exceptions 

2. Buffer the results of all operations until previous instructions 

complete 

– Complex and expensive design (many comparators and large 
MUX) 

– History or future register file 



3. Allow imprecise exceptions and get the handler to 
clean up any miss 

– Save PC + state about the interrupting instruction and all 
out-of-order completed instructions 

– The trap handler will consider the state modification caused 
by finished instructions and prepare machine to resume 
correctly 

– Issues: consider the following example 

Instruction1:    Long running, eventual exception 

Instructions 2 … (n-1) :  Instructions that do not complete 

Instruction n :  An instruction that is finished 

– The compiler can simplify the problem by grouping FP 
instructions so that the trap does not have to worry about 
unrelated instructions  



4. Allow instruction issue to continue only if 
previous instruction are guaranteed to cause 
no exceptions: 

– Mainly applied in the execution phase 

– Used on MIPS R4000 and Intel Pentium 





This figure (A.36 in the 3rd edition) contains several.  

Only take-home: result stalls are most common by far 



• Overlap the execution of unrelated 
instructions 

• Both instruction pipelining and ILP 
enhance instruction throughput not the 
execution time of the individual 
instruction  

• Potential of IPL within a basic block is 
very limited 

– in “gcc” 17% of instructions are control 
transfer meaning on average 5 instructions 
per branch 



for (i=1; i<=1000; i=i+1)
x[i] = x[i] + y[i];

• Techniques like loop unrolling convert loop-level 
parallelism into instruction-level parallelism 
– statically by the compiler 

– dynamically by hardware 

• Loop-level parallelism can also be exploited using 
vector processing 

• IPL feasibility is mainly hindered by data and control 
dependence among the basic blocks 

• Level of parallelism is limited by instruction latencies 



• Basic MIPS integer pipeline 

• Branches with one delay cycle 

• Functional units are fully pipelined or replicated (as many times as the 
pipeline depth)  

– An operation of any type can be issued on every clock cycle and there are no 

structural hazard 

Instruction producing 
result 

Instruction using 
results 

Latency in 
clock cycles 

FP ALU op Another FP ALU op 3 

FP ALU op Store Double 2 

Load Double FP ALU op 1 

Load Double Store Double 0 

 



for(i=1000; i>0; i=i-1)

   x[i] = x[i] + s;

Standard  Pipeline 

execution 

Sophisticated compiler optimization reduced 

execution time from 10 cycles to only 6 cycles 

Loop: LD F0,x(R1) ;F0=x[i]
ADDD F4,F0,F2  ;add F2(=s)
SD x(R1),F4  ;store result
SUBI R1,R1,8   ;i=i-1
BNEZ R1,Loop   ;loop to 0

Loop: LD F0,x(R1)

stall

ADDD  F4,F0,F2

stall

stall

SD  x(R1),F4

SUBI  R1,R1,8

stall

BNEZ  R1,Loop

stall

Loop: LD F0,x(R1)

SUBI R1,R1,8

ADDD F4,F0,F2

stall     ;F4

BNEZ R1,Loop

SD x+8(R1),F4

Smart compiler 


