CMSC 611: Advanced
Computer Architecture

Cache

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides
Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

CPUtime=IC></

~N OO OO B~ W0 DN PP

Techniques for Reducing
Misses

\CPI o+ Memory acc @ Miss penalty) x Clock cycle time

| nstruction

. Reducing Misses via Larger Block Size

. Reducing Misses via Higher Associativity

. Reducing Misses via Victim Cache

. Reducing Misses via Pseudo-Associativity

. Reducing Misses by H/W Prefetching Instr. and Data
. Reducing Misses by S/W Prefetching Data

. Reducing Misses by Compiler Optimizations

Compiler-based Cache
Optimizations

« Complier-based cache optimization reduces the miss rate without
any hardware change

* McFarling [1989] reduced caches misses by 75% (8KB direct
mapped / 4 byte blocks)

For Instructions
— Reorder procedures in memory to reduce conflict

— Profiling to determine likely conflicts among groups of
instructions

For Data
— Merging Arrays: improve spatial locality by single array of
compound elements vs. two arrays

— Loop Interchange: change nesting of loops to access data in
order stored in memory

— Loop Fusion: Combine two independent loops that have same
looping and some variables overlap

— Blocking: Improve temporal locality by accessing “blocks” of
data repeatedly vs. going down whole columns or rows

Examples

Merging Arrays:

[* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

\

> —

/

[* After: 1 array of stuctures */
struct merge {

Int val;

int key;
%

struct merge merged_array[SIZE];

* Reduces misses by improving spatial locality through combined arrays that

are accessed simultaneously

Loop Interchange:

/* Before */
for (k = 0; k < 100; k = k+1)
for (j=0;j<100;|=j+1)
for (i=0;i1<5000;i=1+1)
[0 = 2 * x[Ih];

> —

/

[* After */
for (k = 0; k < 100; k = k+1)
for (1=0;1<5000;i=i+1)
for (j=0;j<100;j=j+1)
[0 = 2 * x[I0];

« Sequential accesses instead of striding through memory every 100 words;

Improved spatial locality

Loop Fusion Example

* Some programs have separate sections of code that access the
same arrays (performing different computation on common data)

* Fusing multiple loops into a single loop allows the data in cache
to be used repeatedly before being swapped out

* Loop fusion reduces missed through improved temporal locality
(rather than spatial locality in array merging and loop interchange)

/* Before */ N % *
for 1=0;1<N;I1=1I+1)]{O;Az‘ite:rO/.KN.i:Hl)
fOI’(J:OI;JI<_N;J:.J"|'];) . for j=0;j<N:;j=j+1){
Al = el el a3 gy
mefOHfNHfHP d[ili] = afili] + clilli;
for j=0;j <N;j=j+1) }

dijp] = apijp] + cfipl; -/

Accessing array “a” and “c” would have caused twice the number of misses
without loop fusion

Blocking Example

[* Before */ e Two Inner Loops:
for i=0;i<N;i=i+l) — Read all NxN elements of z]]
for (J -0 J < N- J — j+1) { — Read N elements of 1 row of y[] repeatedly

— Write N elements of 1 row of X][]
Capacity Misses a function of N & Cache Size:
— 3 x N x N x 4 bytes => no capacity misses;
Idea: compute on B x B sub-matrix that fits

r=0;
for (k=0; k<N; k=k+1)
r=r+y[ik] * z[K][];

X[l =r;
|3
j k j
X y z
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2
0 0 0
2 2 2
i i K

3 3 3
4 4 4
5 5 5

. [] .
x " Blocking Example '
3 4 5 0 1 2 3 B 5 0

0 1 2 1 2 3 -

0 0 0
2 2 2
i K
3 3 3
4 4 4

o
w0
(&

[* After */

for (jj =0;Jj <N; Jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)
for iI=0;i<N;i=i+l)

B called Blocking Factor

Memory words accessed

for (j = ji: j < min(jji+B-1,N); | = j+1) { N3 + N2 > 2NI/B +N?
r=0; « Conflict misses can go
for (k = kk: k < min(kk+B-1,N); k = k+1){ down too
r=r+y[il[k] * z[K][];}; - Blocking is also useful for
X[0] = x[0] + r; register allocation

J

Blocking Factor

 Traditionally blocking is used to reduce
capacity misses relying on high associativity to
tackle conflict misses

« Choosing smaller blocking factor than the
cache capacity can also reduce conflict misses
(fewer words are active in cache)

10%]
| ——

//
" Direct mapped cache

Miss rate 5% [
Fully associative cache

0%

0 5l0 1(.)0 1.‘30.

Blocking factor
Lam et al [1991] a blocking factor of 24 had a fifth the misses compared to a factor of 48
despite both fit in cache

Efficiency of Compiler-Based
Cache Opt.

vpenta (nasa7)

amtyv (nasa?)
tomcatyv

btrix (nasa7) £

mxm (nasa7)
spice
cholesky
(nasa7)
compress

1 1.5 2 2D
Performance Improvement

Emerged arrays Bloop interchange ®loop fusion Oblocking

Reducing Miss Penalty

, Memory accesses . ,
CPUtime = IC x/ CPL._. % — x Miss rate x Clock cycle time
\ Instruction

* Reducing miss penalty can be as effective as the reducing miss rate

* With the gap between the processor and DRAM widening, the relative
cost of the miss penalties increases over time

¢ Seven technigues
— Read priority over write on miss
— Sub-block placement
— Merging write buffer
— Victim cache
— Early Restart and Critical Word First on miss
— Non-blocking Caches (Hit under Miss, Miss under Miss)
— Second Level Cache
* Can be applied recursively to Multilevel Caches
— Danger is that time to DRAM will grow with multiple levels in between

— First attempts at L2 caches can make things worse, since increased
worst case is worse

Read Priority over Write on Miss

* Write through with write buffers offer RAW conflicts with main memory reads on

cache misses

« If simply wait for write buffer to empty, might increase read miss penalty (old MIPS

1000 by 50%)

» Check write buffer contents before read; if no conflicts, let the memory access

continue

Processor

Cache
DRAM

AWrite Back?

——
— —

Write Buffer

= Read miss replacing dirty block
= Normal: Write dirty block to memory, and then do the read
= |[nstead copy the dirty block to a write buffer, then do the read, and then

do the write

=» CPU stall less since restarts as soon as do read

Sub-block Placement

Originally invented to reduce tag storage while avoiding the increased miss penalty
caused by large block sizes

Enlarge the block size while dividing each block into smaller units (sub-blocks) and
thus does not have to load full block on a miss

Include valid bits per sub-block to indicate the status of the sub-block (in cache or not)

100

300

200

204

““““
a®
-

.
‘‘‘‘‘
. .
“““
‘‘‘‘‘‘‘‘
““““
‘‘‘‘‘‘‘‘
......

. L
o*
.

NS Sub-blocks

-

“““““““
o*

Valid Bits “#™"

Early Restart and Critical Word
First
 Don’t wait for full block to be loaded before

restarting CPU

— Early restart

* As soon as the requested word of the block arrives, send it
to the CPU and let the CPU continue execution

— Critical Word First

* Request the missed word first from memory
» Also called wrapped fetch and requested word first

- block

« Complicates cache controller design

 CWEF generally useful only in large blocks

« Given spatial locality programs tend to want
next sequential word, limits benefit

Victim Cache Approach

CPU
address
Data Data
in out

Y

' ,,

=)
T

Data |« » Victim cache

Yy
*‘H' Write
buffer

\
 Lower both miss rate

* Reduce average miss penalty
 Slightly extend the worst case miss penalty

— Tag

Lower level memory

Non-blocking Caches

Early restart still waits for the requested word to arrive before the
CPU can continue execution

For machines that allows out-of-order execution using a
scoreboard or a Tomasulo-style control the CPU should not stall
on cache misses

“Non-blocking cache” or “lock-free cache” allows data cache to
continue to supply cache hits during a miss

“hit under miss” reduces the effective miss penalty by working
during miss vs. ignoring CPU requests

“hit under multiple miss” or “miss under miss” may further lower
the effective miss penalty by overlapping multiple misses

— Significantly increases the complexity of the cache controller
as there can be multiple outstanding memory accesses

— Requires multiple memory banks (otherwise cannot support)
— Pentium Pro allows 4 outstanding memory misses

Ratio of the average memory stall time

Performance of Non-blocking
Caches

‘ @ Hitunder 1 miss B Hitunder 2 misses @ Hit under 64 misses I

Second Level Cache

* The previous technigues reduce the impact of
the miss penalty on the CPU

— L2 cache handles the cache-memory interface

« Measuring cache performance

AMAT = HitTime| 1 + MissRate| 1 x MissPenalty| 1
= HitTime| 1 + MissRate| 1 x (HitTime| » + MissRate| » x MissPenalty| »)

* Local miss rate
— misses in this cache divided by the total number of
memory accesses to this cache (MissRate,,)
* Global miss rate (& biggest penalty!)

— misses in this cache divided by the total number of
memory accesses generated by the CPU
(MissRate , x MissRate,,)

80.0%

70.0%

60.0%

50.0%
Miss 40.0%
rate

30.0%

20.0%

10.0%

Local vs Global Misses

2% 72% 7%
\53%
\ 38%
\ 28%
S
18% —16% —15% 15%
Local miss rate
8% 6%

;1 4°|A’ 3% 29, 1% 1% 1% 1% 1% 1% Single cache miss rate
3%—13%—13%—12% o = l & m Global miss rate

4 8 16 32 64 128 256 512 1024 2048 4096
Cache size (KB)

(Global miss rate close to single level cache rate provided L2 >> L1)

Relative execution time

L2 Cache Parameters

» 32 bhit bus

. 519KB cache * L1 cache directly affects

the processor design
and clock cycle: should
be simple and small

* Bulk of optimization
techniques can go easily
to L2 cache

1.95
[1.54
1.50 . .
* Miss-rate reduction
. 1.34 :
128 17 more practical for L2
| Considering the L2
: cache can improve the
o , , , , , L1 cache design,
. 16 32 64 128 256 512

— e.g. use write-through if

Block size of second-level cache (byte) ticckaChe applies write-

2.00 r

1.75 F

Reducing Hit Time
Average Access Time (1 - Miss Rate) + Miss Time x Miss Rate

« Hit rate is typically very high compared to miss rate
— any reduction in hit time is magnified

« Hit time critical: affects processor clock rate

* Three techniques to reduce hit time:
— Simple and small caches
— Avoid address translation during cache indexing
— Pipelining writes for fast write hits

Simple and small caches

* Design simplicity limits control logic complexity and
allows shorter clock cycles

* On-chip integration decreases signal propagation
delay, thus reducing hit time

— Alpha 21164 has 8KB Instruction and 8KB data cache and
96KB second level cache to reduce clock rate

