
Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides

Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

1. Reducing Misses via Larger Block Size

2. Reducing Misses via Higher Associativity

3. Reducing Misses via Victim Cache

4. Reducing Misses via Pseudo-Associativity

5. Reducing Misses by H/W Prefetching Instr. and Data

6. Reducing Misses by S/W Prefetching Data

7. Reducing Misses by Compiler Optimizations

CPUtime = IC CPI
Execution

+
Memory accesses

Instruction
Miss rate Miss penalty

Clock cycle time

• Complier-based cache optimization reduces the miss rate without
any hardware change

• McFarling [1989] reduced caches misses by 75% (8KB direct
mapped / 4 byte blocks)

For Instructions

– Reorder procedures in memory to reduce conflict

– Profiling to determine likely conflicts among groups of
instructions

For Data

– Merging Arrays: improve spatial locality by single array of
compound elements vs. two arrays

– Loop Interchange: change nesting of loops to access data in
order stored in memory

– Loop Fusion: Combine two independent loops that have same
looping and some variables overlap

– Blocking: Improve temporal locality by accessing “blocks” of
data repeatedly vs. going down whole columns or rows

Merging Arrays:

/* Before: 2 sequential arrays */

int val[SIZE];

int key[SIZE];

/* After: 1 array of stuctures */

struct merge {

 int val;

 int key;

};

struct merge merged_array[SIZE];

• Reduces misses by improving spatial locality through combined arrays that
are accessed simultaneously

Loop Interchange:

/* Before */

for (k = 0; k < 100; k = k+1)

 for (j = 0; j < 100; j = j+1)

 for (i = 0; i < 5000; i = i+1)

 x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

 for (i = 0; i < 5000; i = i+1)

 for (j = 0; j < 100; j = j+1)

 x[i][j] = 2 * x[i][j];

• Sequential accesses instead of striding through memory every 100 words;
improved spatial locality

/* Before */

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

 a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

 d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1) {

a[i][j] = 1/b[i][j] * c[i][j];

 d[i][j] = a[i][j] + c[i][j];

}

Accessing array “a” and “c” would have caused twice the number of misses

without loop fusion

• Some programs have separate sections of code that access the

same arrays (performing different computation on common data)

• Fusing multiple loops into a single loop allows the data in cache

to be used repeatedly before being swapped out

• Loop fusion reduces missed through improved temporal locality

(rather than spatial locality in array merging and loop interchange)

/* Before */

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1) {

 r = 0;

 for (k = 0; k < N; k = k+1)

 r = r + y[i][k] * z[k][j];

 x[i][j] = r;

 };

• Two Inner Loops:

– Read all NxN elements of z[]

– Read N elements of 1 row of y[] repeatedly

– Write N elements of 1 row of x[]

• Capacity Misses a function of N & Cache Size:

– 3 N N 4 bytes => no capacity misses;

• Idea: compute on B B sub-matrix that fits

• B called Blocking Factor

• Memory words accessed

 2N3 + N2 2N3/B +N2

• Conflict misses can go
down too

• Blocking is also useful for
register allocation

/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

 for (j = jj; j < min(jj+B-1,N); j = j+1) {

 r = 0;

 for (k = kk; k < min(kk+B-1,N); k = k+1) {

 r = r + y[i][k] * z[k][j];};

 x[i][j] = x[i][j] + r;

 };

• Traditionally blocking is used to reduce
capacity misses relying on high associativity to
tackle conflict misses

• Choosing smaller blocking factor than the
cache capacity can also reduce conflict misses
(fewer words are active in cache)

Lam et al [1991] a blocking factor of 24 had a fifth the misses compared to a factor of 48

despite both fit in cache

CPUtime = IC CPI
Execution

+
Memory accesses

Instruction
Miss rate Miss penalty

Clock cycle time

• Reducing miss penalty can be as effective as the reducing miss rate

• With the gap between the processor and DRAM widening, the relative

cost of the miss penalties increases over time

• Seven techniques

– Read priority over write on miss

– Sub-block placement

– Merging write buffer

– Victim cache

– Early Restart and Critical Word First on miss

– Non-blocking Caches (Hit under Miss, Miss under Miss)

– Second Level Cache

• Can be applied recursively to Multilevel Caches

– Danger is that time to DRAM will grow with multiple levels in between

– First attempts at L2 caches can make things worse, since increased

worst case is worse

• Write through with write buffers offer RAW conflicts with main memory reads on

cache misses

• If simply wait for write buffer to empty, might increase read miss penalty (old MIPS

1000 by 50%)

• Check write buffer contents before read; if no conflicts, let the memory access

continue

Processor
Cache

Write Buffer

DRAM

Write Back?

 Read miss replacing dirty block

 Normal: Write dirty block to memory, and then do the read

 Instead copy the dirty block to a write buffer, then do the read, and then
 do the write

 CPU stall less since restarts as soon as do read

• Originally invented to reduce tag storage while avoiding the increased miss penalty

caused by large block sizes

• Enlarge the block size while dividing each block into smaller units (sub-blocks) and

thus does not have to load full block on a miss

• Include valid bits per sub-block to indicate the status of the sub-block (in cache or not)

Valid Bits

block

• Don’t wait for full block to be loaded before
restarting CPU
– Early restart

• As soon as the requested word of the block arrives, send it
to the CPU and let the CPU continue execution

– Critical Word First
• Request the missed word first from memory

• Also called wrapped fetch and requested word first

• Complicates cache controller design

• CWF generally useful only in large blocks

• Given spatial locality programs tend to want
next sequential word, limits benefit

CPU

address

Data Data

in out

Write

buffer

Lower level memory

Victim cache

=?

=?

Data
Tag

• Lower both miss rate

• Reduce average miss penalty

• Slightly extend the worst case miss penalty

• Early restart still waits for the requested word to arrive before the

CPU can continue execution

• For machines that allows out-of-order execution using a

scoreboard or a Tomasulo-style control the CPU should not stall

on cache misses

• “Non-blocking cache” or “lock-free cache” allows data cache to

continue to supply cache hits during a miss

• “hit under miss” reduces the effective miss penalty by working
during miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss” may further lower

the effective miss penalty by overlapping multiple misses

– Significantly increases the complexity of the cache controller

as there can be multiple outstanding memory accesses

– Requires multiple memory banks (otherwise cannot support)

– Pentium Pro allows 4 outstanding memory misses

Benchmark

R
a
ti
o
 o

f
th

e
 a

v
e
ra

g
e
 m

e
m

o
ry

 s
ta

ll
ti
m

e

• The previous techniques reduce the impact of
the miss penalty on the CPU
– L2 cache handles the cache-memory interface

• Measuring cache performance

• Local miss rate
– misses in this cache divided by the total number of

memory accesses to this cache (MissRateL2)

• Global miss rate (& biggest penalty!)
– misses in this cache divided by the total number of

memory accesses generated by the CPU
(MissRateL1 MissRateL2)

AMAT = HitTimeL1 + MissRateL1 MissPenaltyL1

= HitTimeL1 + MissRateL1 (HitTimeL2 + MissRateL2 MissPenaltyL2)

(Global miss rate close to single level cache rate provided L2 >> L1)

Block size of second-level cache (byte)

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t

im
e

• 32 bit bus

• 512KB cache
• L1 cache directly affects

the processor design
and clock cycle: should
be simple and small

• Bulk of optimization
techniques can go easily
to L2 cache

• Miss-rate reduction
more practical for L2

• Considering the L2
cache can improve the
L1 cache design,
– e.g. use write-through if

L2 cache applies write-
back

Average Access Time = Hit Time x (1 - Miss Rate) + Miss Time x Miss Rate

• Hit rate is typically very high compared to miss rate
– any reduction in hit time is magnified

• Hit time critical: affects processor clock rate

• Three techniques to reduce hit time:
– Simple and small caches

– Avoid address translation during cache indexing

– Pipelining writes for fast write hits

Simple and small caches

• Design simplicity limits control logic complexity and
allows shorter clock cycles

• On-chip integration decreases signal propagation
delay, thus reducing hit time
– Alpha 21164 has 8KB Instruction and 8KB data cache and

96KB second level cache to reduce clock rate

