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1. Reducing Misses via Larger Block Size 

2. Reducing Misses via Higher Associativity 

3. Reducing Misses via Victim Cache 

4. Reducing Misses via Pseudo-Associativity 

5. Reducing Misses by H/W Prefetching Instr. and Data 

6. Reducing Misses by S/W Prefetching Data 

7. Reducing Misses by Compiler Optimizations 
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• Complier-based cache optimization reduces the miss rate without 
any hardware change 

• McFarling [1989] reduced caches misses by 75% (8KB direct 
mapped / 4 byte blocks) 

For Instructions 

– Reorder procedures in memory to reduce conflict 

– Profiling to determine likely conflicts among groups of 
instructions 

For Data 

– Merging Arrays: improve spatial locality by single array of 
compound elements vs. two arrays 

– Loop Interchange: change nesting of loops to access data in 
order stored in memory 

– Loop Fusion: Combine two independent loops that have same 
looping and some variables overlap 

– Blocking: Improve temporal locality by accessing “blocks” of 
data repeatedly vs. going down whole columns or rows 



Merging Arrays: 

/* Before: 2 sequential arrays */ 

int val[SIZE]; 

int key[SIZE]; 

/* After: 1 array of stuctures */ 

struct merge { 

 int val; 

 int key; 

}; 

struct merge merged_array[SIZE]; 

• Reduces misses by improving spatial locality through combined arrays that 
are accessed simultaneously 

Loop Interchange: 

/* Before */ 

for (k = 0; k < 100; k = k+1) 

   for (j = 0; j < 100; j = j+1) 

      for (i = 0; i < 5000; i = i+1) 

 x[i][j] = 2 * x[i][j]; 

/* After */ 

for (k = 0; k < 100; k = k+1) 

   for (i = 0; i < 5000; i = i+1) 

      for (j = 0; j < 100; j = j+1) 

 x[i][j] = 2 * x[i][j]; 

• Sequential accesses instead of striding through memory every 100 words; 
improved spatial locality 



/* Before */ 

for (i = 0; i < N; i = i+1) 

   for (j = 0; j < N; j = j+1) 

 a[i][j] = 1/b[i][j] * c[i][j]; 

for (i = 0; i < N; i = i+1) 

   for (j = 0; j < N; j = j+1) 

 d[i][j] = a[i][j] + c[i][j]; 

/* After */ 

for (i = 0; i < N; i = i+1) 

   for (j = 0; j < N; j = j+1) { 

a[i][j] = 1/b[i][j] * c[i][j]; 

 d[i][j] = a[i][j] + c[i][j]; 

} 

Accessing array “a” and “c” would have caused twice the number of misses 

without loop fusion 

• Some programs have separate sections of code that access the 

same arrays (performing different computation on common data)   

• Fusing multiple loops into a single loop allows the data in cache 

to be used repeatedly before being swapped out 

• Loop fusion reduces missed through improved temporal locality 

(rather than spatial locality in array merging and loop interchange) 



/* Before */ 

for (i = 0; i < N; i = i+1) 

   for (j = 0; j < N; j = j+1) { 

      r = 0; 

      for (k = 0; k < N; k = k+1) 

 r = r + y[i][k] * z[k][j]; 

      x[i][j] = r; 

      }; 

• Two Inner Loops: 

– Read all NxN elements of z[] 

– Read N elements of 1 row of y[] repeatedly 

– Write N elements of 1 row  of x[] 

• Capacity Misses a function of N & Cache Size: 

–  3  N  N  4 bytes => no capacity misses;  

• Idea: compute on B  B sub-matrix that fits 



• B called Blocking Factor 

• Memory words accessed  

    2N3 + N2  2N3/B +N2 

• Conflict misses can go 
down too 

• Blocking is also useful for 
register allocation 

/* After */ 

for (jj = 0; jj < N; jj = jj+B) 

for (kk = 0; kk < N; kk = kk+B) 

for (i = 0; i < N; i = i+1) 

    for (j = jj; j < min(jj+B-1,N); j = j+1) { 

        r = 0; 

        for (k = kk; k < min(kk+B-1,N); k = k+1) { 

 r = r + y[i][k] * z[k][j];}; 

        x[i][j] = x[i][j] + r; 

        }; 



• Traditionally blocking is used to reduce 
capacity misses relying on high associativity to 
tackle conflict misses 

• Choosing smaller blocking factor than the 
cache capacity can also reduce conflict misses 
(fewer words are active in cache) 

Lam et al [1991] a blocking factor of 24 had a fifth the misses compared to a factor of 48 

despite both fit in cache 
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• Reducing miss penalty can be as effective as the reducing miss rate 

• With the gap between the processor and DRAM widening, the relative 

cost of the miss penalties increases over time 

• Seven techniques 

– Read priority over write on miss 

– Sub-block placement 

– Merging write buffer 

– Victim cache 

– Early Restart and Critical Word First on miss 

– Non-blocking Caches (Hit under Miss, Miss under Miss) 

– Second Level Cache 

• Can be applied recursively to Multilevel Caches 

– Danger is that time to DRAM will grow with multiple levels in between 

– First attempts at L2 caches can make things worse, since increased 

worst case is worse 



• Write through with write buffers offer RAW conflicts with main memory reads on 

cache misses 

• If simply wait for write buffer to empty, might increase read miss penalty (old MIPS 

1000 by 50% ) 

• Check write buffer contents before read; if no conflicts, let the memory access 

continue 

Processor 
Cache 

Write Buffer 

DRAM 

Write Back? 

 Read miss replacing dirty block 

 Normal: Write dirty block to memory, and then do the read 

 Instead copy the dirty block to a write buffer, then do the read, and then  
    do the write 

 CPU stall less since restarts as soon as do read 



• Originally invented to reduce tag storage while avoiding the increased miss penalty 

caused by large block sizes 

• Enlarge the block size while dividing each block into smaller units (sub-blocks) and 

thus does not have to load full block on a miss 

• Include valid bits per sub-block to indicate the status of the sub-block (in cache or not) 

Valid Bits 



block 

• Don’t wait for full block to be loaded before 
restarting CPU 
– Early restart 

• As soon as the requested word of the block arrives, send it 
to the CPU and let the CPU continue execution 

– Critical Word First 
• Request the missed word first from memory  

• Also called wrapped fetch and requested word  first 

• Complicates cache controller design 

• CWF generally useful only in large blocks  

• Given spatial locality programs tend to want 
next sequential word, limits benefit 



CPU

address

Data    Data

in    out

Write

buffer

Lower level memory

Victim cache

=?

=?

Data
Tag

• Lower both miss rate  

• Reduce average miss penalty  

• Slightly extend the worst case miss penalty 



• Early restart still waits for the requested word to arrive before the 

CPU can continue execution 

• For machines that allows out-of-order execution using a 

scoreboard or a Tomasulo-style control the CPU should not stall 

on cache misses 

• “Non-blocking cache” or “lock-free cache” allows data cache to 

continue to supply cache hits during a miss 

• “hit under miss”  reduces the effective miss penalty by working 
during miss vs. ignoring CPU requests 

• “hit under multiple miss” or “miss under miss”  may further lower 

the effective miss penalty by overlapping multiple misses 

– Significantly increases the complexity of the cache controller 

as there can be multiple outstanding memory accesses 

– Requires multiple memory banks (otherwise cannot support) 

– Pentium Pro allows 4 outstanding memory misses 



Benchmark 
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• The previous techniques reduce the impact of 
the miss penalty on the CPU 
– L2 cache handles the cache-memory interface 

• Measuring cache performance     

• Local miss rate 
– misses in this cache divided by the total number of 

memory accesses to this cache (MissRateL2) 

• Global miss rate (& biggest penalty!) 
– misses in this cache divided by the total number of 

memory accesses generated by the CPU 
(MissRateL1  MissRateL2) 

  

AMAT = HitTimeL1 + MissRateL1 MissPenaltyL1

= HitTimeL1 + MissRateL1 (HitTimeL2 + MissRateL2 MissPenaltyL2 )



(Global miss rate close to single level cache rate provided L2 >> L1) 



Block size of second-level cache (byte) 
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• 32 bit bus 

• 512KB cache 
• L1 cache directly affects 

the processor design 
and clock cycle: should 
be simple and small 

• Bulk of optimization 
techniques can go easily 
to L2 cache 

• Miss-rate reduction 
more practical for L2 

• Considering the L2 
cache can improve the 
L1 cache design,  
– e.g. use write-through if 

L2 cache applies write-
back 



Average Access Time = Hit Time x (1 - Miss Rate)  +  Miss Time x Miss Rate 

• Hit rate is typically very high compared to miss rate 
– any reduction in hit time is magnified 

• Hit time critical: affects processor clock rate 

• Three techniques to reduce hit time: 
– Simple and small caches 

– Avoid address translation during cache indexing 

– Pipelining writes for fast write hits 

Simple and small caches 

• Design simplicity limits control logic complexity and 
allows shorter clock cycles  

• On-chip integration decreases signal propagation 
delay, thus reducing hit time  
– Alpha 21164 has 8KB Instruction and 8KB data cache and 

96KB second level cache to reduce clock rate 


