
Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides

Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

Read stall cycles =
Reads

Program
Read miss rate Read miss penalty

 CPU time = (CPU execution cycles + Memory stall cycles) Cycle time

Memory stall cycles = Read stall cycles + Write stall cycles

Write stall cycles =
Writes

Program
Write miss rate Write miss penalty

 + Write buffer stalls

For write-through scheme: Hard to control, assume

enough buffer size

• To enhance cache performance, one can:

– Reduce the miss rate (e.g. diminishing blocks collisions)

– Reduce the miss penalty (e.g. adding multi-level caching)

– Enhance hit access time (e.g. simple and small cache)

Assume an instruction cache miss rate for gcc of 2% and a data cache miss rate of 4%.

If a machine has a CPI of 2 without any memory stalls and the miss penalty is 40 cycles
for all misses, determine how much faster a machine would run with a perfect cache that

never missed. Assume 36% combined frequencies for load and store instructions

Answer:

Assume number of instructions = I

Instruction miss cycles = I 2% 40 = 0.8 I

Data miss cycles = I 36% 4% 40 = 0.56 I

Total number of memory-stall cycles = 0.8 I + 0.56 I = 1.36 I

The CPI with memory stalls = 2 + 1.36 = 3.36

2

363

cycle ClockI

cycle ClockI

cache perfect withtime CPU

stalls withtime CPU .
===

perfect

stall

perfect

stall

CPI

CPI

CPI

CPI

What happens if the CPU gets faster?

• Compulsory
– First access to a block not in cache

– Also called cold start or first reference misses

– (Misses in even an Infinite Cache)

• Capacity
– If the cache cannot contain all needed blocks

– Due to blocks discarded and re-retrieved

– (Misses in Fully Associative Cache)

• Conflict
– Set associative or direct mapped: too many blocks

in set

– Also called collision or interference

– (Misses in N-way Associative Cache)

• Capacity misses can be damaging to the
performance (excessive main memory
access)

• Increasing associativity, cache size and
block width can reduces misses

• Changing cache size affects both
capacity and conflict misses since it
spreads out references to more blocks

• Some optimization techniques that
reduces miss rate also increases hit
access time

Conflict Based on SPEC92

• Compulsory misses are small compared to other

categories

• Capacity misses diminish with increased cache size

• Increasing associativity limits the placement conflicts

Cache Size (KB)

M
is

s
R
a
te

p
e
r

T
y
p
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way

4-way

8-way

Capacity

Compulsory

1. Reducing Misses via Larger Block Size

2. Reducing Misses via Higher Associativity

3. Reducing Misses via Victim Cache

4. Reducing Misses via Pseudo-Associativity

5. Reducing Misses by H/W Prefetching Instr. and Data

6. Reducing Misses by S/W Prefetching Data

7. Reducing Misses by Compiler Optimizations

CPUtime = IC CPI
Execution

+
Memory accesses

Instruction
Miss rate Miss penalty

Clock cycle time

• Larger block sizes reduces compulsory misses
(principle of spatial locality)

• Conflict misses increase for larger block sizes since
cache has fewer blocks

• The miss penalty usually outweighs the decrease of
the miss rate making large block sizes less favored

2:1 Cache Rule:

Miss Rate for direct

mapped cache of size N

= Miss Rate 2-way

 cache size N/2

• Greater associativity comes at the expense of
larger hit access time

• Hardware complexity grows for high
associativity and clock cycle increases

Cache Size (KB)

M
is

s
R
at

e

p
e
r

T
y
p
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Associativity Cache Size
(KB) 1-way 2-way 4-way 8-way

1 7.65 6.60 6.22 5.44

2 5.90 4.90 4.62 4.09

4 4.60 3.95 3.57 3.19

8 3.30 3.00 2.87 2.59

16 2.45 2.20 2.12 2.04

32 2.00 1.80 1.77 1.79

64 1.70 1.60 1.57 1.59

128 1.50 1.45 1.42 1.44

Assume hit time is 1 clock cycle and average miss penalty is 50 clock cycles for

a direct mapped cache. The clock cycle increases by a factor of 1.10 for 2-way,

1.12 for 4-way, 1.14 for 8-way associative cache. Compare the average

memory access based on the previous figure miss rates

High associativity becomes

a negative aspect

A good size of direct mapped cache can

be very efficient given its simplicity

CPU

address

Data Data

in out

Write

buffer

Lower level memory

Victim cache

=?

=?

Data
Tag

• Combines fast hit time of direct
mapped yet still avoids conflict misses
– Adds small fully asssociative cache between the direct

mapped cache and memory to place data discarded from
cache

– Jouppi [1990]: 4-entry victim cache removed 20% to 95% of
conflicts for a 4 KB direct mapped data cache

– Technique is used in Alpha, HP machines and does not impair
the clock rate

• Combine fast hit time of Direct Mapped and
lower conflict misses of 2-way set associative

• Divide cache: on a miss, check other half of
cache to see if there, if so have a pseudo-hit

• Simplest implementation inverts the index field
MSB to find the other pseudo set

• To limit the impact of hit time variability on
performance, swap block contents

• Drawback: CPU pipeline is hard if hit takes 1
or 2 cycles
– Better for caches not tied directly to processor (L2)

– Used in MIPS R1000 L2 cache, similar in
UltraSPARC

• Hardware pre-fetches instructions and data while handing other
cache misses

– Assume pre-fetched items will be referenced shortly

• Pre-fetching relies on having extra memory bandwidth that can be
used without penalty

• Examples of Instruction Pre-fetching:

– Alpha 21064 fetches 2 blocks on a miss

– Extra block placed in “stream buffer”

– On miss check stream buffer

• Works with data blocks too:

– Jouppi [1990] 1 data stream buffer got 25% misses from 4KB
cache; 4 streams got 43%

– Palacharla & Kessler [1994] for scientific programs for 8
streams got 50% to 70% of misses from 2 64KB, 4-way set
associative caches

Average memory access time = Hit time + Miss Rate

(Prefetch hit rate + (1 Prefetch hit rate) Miss penalty)

for (i = 0; i < 3; i = i+1)

 for (j = 0; j < 100; j = j+1)

 a[i][j] = b[j][0] * b[j+1][0];

for (j = 0; j < 100; j = j+1)

 pre-fetch (b[i+7][0]);

 a[0][j] = b[j][0] * b[j+1][0];

 for (i = 1; i < 3; i = i+1)

 pre-fetch (a[i][j+7]);

 a[i-1][j] = b[j][0] * b[j+1][0];

• Uses special instructions to pre-fetch data:

– Load data into register (HP PA-RISC loads)

– Cache Pre-fetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)

• Special pre-fetching instructions cannot cause faults (undesired exceptions) since

it is a form of speculative execution

• Makes sense if the processor can proceeds without blocking for a cache access

(lock-free cache)

• Loops are typical target for pre-fetching after unrolling (miss penalty is small) or

after applying software pipelining (miss penalty is large)

• Issuing Pre-fetch Instructions takes time

– Is cost of pre-fetch issues < savings in reduced misses?

– Higher superscalar reduces difficulty of issue bandwidth

