CMSC 611: Advanced
Computer Architecture

Cache 2

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides
Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

Measuring Cache Performance

« To enhance cache performance, one can:
— Reduce the miss rate (e.g. diminishing blocks collisions)
— Reduce the miss penalty (e.g. adding multi-level caching)
— Enhance hit access time (e.g. simple and small cache)

CPU time = (CPU execution cycles + Memory stall cycles) x Cycle time

Memory stall cycles = Read stall cycles + Write stall cycles

Read stall cycles = REERE x Read miss rate x Read miss penalty
Program
For write-through scheme: AEE| 1D EEITEl, SRS
enough buffer size
: Writes . . : . ;
Write stall cycles =| —————— x Write miss rate x Write miss penalty | + Write buffer stalls

Program

Example

Assume an instruction cache miss rate for gcc of 2% and a data cache miss rate of 4%.

If a machine has a CPI of 2 without any memory stalls and the miss penalty is 40 cycles
for all misses, determine how much faster a machine would run with a perfect cache that

never missed. Assume 36% combined frequencies for load and store instructions
Answer:

Assume number of instructions = |

Instruction miss cycles =1 x 2% x 40 =0.8 x |

Data miss cycles =1 x 36% x 4% x 40 = 0.56 x |

Total number of memory-stall cycles=0.81+0.56 | =1.36 |

The CPI with memory stalls =2 + 1.36 = 3.36
CPU time with stalls _ IxCPlgg xClockcycle _ CPlgy _ 3.36
CPU time with perfect cache IxCPl et xClock cycle CPlyqptect 2

What happens if the CPU gets faster?

Classifying Cache Misses

 Compulsory
— First access to a block not in cache
— Also called cold start or first reference misses
— (Misses In even an Infinite Cache)

« Capacity
— If the cache cannot contain all needed blocks
— Due to blocks discarded and re-retrieved
— (Misses in Fully Associative Cache)

 Conflict

— Set associative or direct mapped: too many blocks
In set

— Also called collision or interference
— (Misses in N-way Associative Cache)

Improving Cache Performance

« Capacity misses can be damaging to the
performance (excessive main memory
access)

 Increasing associativity, cache size and
block width can reduces misses

« Changing cache size affects both

capacity and conflict misses since it
spreads out references to more blocks

* Some optimization techniques that
reduces miss rate also increases hit
access time

Miss Rate Distribution

« Compulsory misses are small compared to other
categories
« Capacity misses diminish with increased cache size

* Increasing associativity limits the placement conflicts

0.14 1-way Conflict Based on SPEC92

S 8-way

Capacity

Cache Size (KB) Compulsory

CPUtime=IC></

~N OO OO B~ W0 DN PP

Techniques for Reducing
Misses

\CPI o+ Memory acc @ Miss penalty) x Clock cycle time

| nstruction

. Reducing Misses via Larger Block Size

. Reducing Misses via Higher Associativity

. Reducing Misses via Victim Cache

. Reducing Misses via Pseudo-Associativity

. Reducing Misses by H/W Prefetching Instr. and Data
. Reducing Misses by S/W Prefetching Data

. Reducing Misses by Compiler Optimizations

Reduce Misses via Larger
_Block Size

m 1k m 4k ® 16k
-8 64Kk —a— 256k

25% e

20% [

Miss
rate

5% becocccccsoonooccoooocooooocccoooooccoooocs s oooocs 0 000EoE S0 ooE oS00 00ES05000000 000000050000 000000000 0000000 000s00 000

0%
16 32 64 128 256

Block size

» Larger block sizes reduces compulsory misses
(principle of spatial locality)

« Conflict misses increase for larger block sizes since
cache has fewer blocks

« The miss penalty usually outweighs the decrease of
the miss rate making large block sizes less favored

Reduce Misses via Higher
Associativity

2:1 Cache Rule:

0.14

1-way

P12 D Miss Rate for direct

« 0.1 ;

8 4-way mapped cache of size N
0.08 .

5 8-way = Miss Rate 2-way

Capacity cache size N/2

Cache Size (KB) Compulsory

« Greater associativity comes at the expense of
larger hit access time

« Hardware complexity grows for high
associativity and clock cycle increases

Example

Assume hit time is 1 clock cycle and average miss penalty is 50 clock cycles for
a direct mapped cache. The clock cycle increases by a factor of 1.10 for 2-way,
1.12 for 4-way, 1.14 for 8-way associative cache. Compare the average
memory access based on the previous figure miss rates

Cache Size Associativity
(KB) 1-way 2-way 4-way 8-way
1 7.65 6.60 6.22 5.44
2 5.90 4.90 4.62 4.09
4 4.60 3.95 3.57 3.19
8 3.30 3.00 2.87 2.59
16 2.45 2.20 2.12 2.04
32 2.00 1.80 1.77 1.79
64 1.70 1.60 1.57 . 1.59
128 /1.50 1.45 1.42 / 1.44
g /
A good size of direct mapped cache can _ o
be very efficient given its simplicity High associativity becomes

a negative aspect

Victim Cache Approach

CPU
address
Data Data
= in out

Y

Victim cache

y
%:%> Write
buffer

« Combines fast hit time of direct Lower level memory
mapped yet still avoids conflict misses

— Adds small fully asssociative cache between the direct
mapped cache and memory to place data discarded from
cache

— Jouppi [1990]: 4-entry victim cache removed 20% to 95% of
conflicts for a 4 KB direct mapped data cache

— Technique is used in Alpha, HP machines and does not impair
the clock rate

Data

A

Y

Pseudo-Associativity

Mechanism

Combine fast hit time of Direct Mapped and
lower conflict misses of 2-way set associative

Divide cache: on a miss, check other half of
cache to see If there, If so have a pseudo-hit

Simplest implementation inverts the index field
MSB to find the other pseudo set

To limit the impact of hit time variability on
performance, swap block contents

Drawback: CPU pipeline is hard if hit takes 1
or 2 cycles

— Better for caches not tied directly to processor (L2)

— Used in MIPS R1000 L2 cache, similar In
UltraSPARC

H/W Pre-fetching of
Instructions & Data

Hardware pre-fetches instructions and data while handing other
cache misses

— Assume pre-fetched items will be referenced shortly

Pre-fetching relies on having extra memory bandwidth that can be
used without penalty

Average memory access time = Hit time + Miss Rate x
(Prefetch hit rate + (1- Prefetch hit rate) x Miss penalty)

Examples of Instruction Pre-fetching:
— Alpha 21064 fetches 2 blocks on a miss
— Extra block placed in “stream buffer”
— On miss check stream buffer

Works with data blocks too:

— Jouppi [1990] 1 data stream buffer got 25% misses from 4KB
cache; 4 streams got 43%

— Palacharla & Kessler [1994] for scientific programs for 8
streams got 50% to 70% of misses from 2 64KB, 4-way set
associative caches

Software Pre-fetching Data

» Uses special instructions to pre-fetch data:
— Load data into register (HP PA-RISC loads)
— Cache Pre-fetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)

« Special pre-fetching instructions cannot cause faults (undesired exceptions) since
it is a form of speculative execution

* Makes sense if the processor can proceeds without blocking for a cache access
(lock-free cache)

* Loops are typical target for pre-fetching after unrolling (miss penalty is small) or
after applying software pipelining (miss penalty is large)
* Issuing Pre-fetch Instructions takes time
— Is cost of pre-fetch issues < savings in reduced misses?
— Higher superscalar reduces difficulty of issue bandwidth

N for (j = 0;j < 100; j = j+1)
for(i=0;i<3;i=i+l) pre-fetch (b[i+7][0]);
for (j = 0; < 100; j = j+1) > — a[o][j] = b{][O] * b[j+1][O];
a[i]ii] = b[][0] * bj+1][C]; for (I=171<3;1=1+1)
pre-fetch (a[i][j+7]);

/ a[i-1]p] = bp][0] * b[j+1](0];

