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•  Temporal Locality (Locality in Time): 

 Keep most recently accessed data items closer to the processor 

•  Spatial Locality (Locality in Space): 

 Move blocks consists of contiguous words to the faster levels  
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• Hit: data appears in some block in the faster level (example: Block X)  

– Hit Rate: the fraction of memory access found in the faster level 

– Hit Time: Time to access the faster level which consists of 

• Memory access time + Time to determine hit/miss 

• Miss: data needs to be retrieve from a block in the slower level (Block Y) 

– Miss Rate  = 1 - (Hit Rate) 

– Miss Penalty: Time to replace a block in the upper level  + Time to 

deliver the block the processor 

• Hit Time << Miss Penalty 



• Block identification 
– How is a block found if it is in the upper (faster) level?  

• Tag/Block 

• Block placement 
– Where can a block be placed in the upper (faster) level?  

• Fully Associative, Set Associative, Direct Mapped 

• Block replacement 
– Which block should be replaced on a miss?  

• Random, LRU 

• Write strategy 
– What happens on a write? 

• Write Back or Write Through (with Write Buffer) 
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Issues:  
• How do we know that a data item is in cache? 

• If so, How to find it?  

• Cache: level of hierarchy closest to processor 

• Caches first appeared in research machines in early 1960s 

• Virtually every general-purpose computer produced today 

includes cache 
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Cache block address = (Block address) modulo (Number of cache blocks) 

Memory words can be 

mapped only to one 
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 Cache Tag 
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• Worst case is to keep replacing 

a block followed by a miss for it: 

Ping Pong Effect 

• To reduces misses:  

– make the cache size bigger 

– multiple entries for the same 
Cache Index 
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• Cache Size depends on: 

– # cache blocks 

– # address bits 

– Word size 

• Example:  

– For n-bit address, 4-byte 

word & 1024 cache 

blocks:  

– cache size =  

1024 [(n-10 -2) + 1 + 32] bit 

Address (showing bit positions)
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Byte
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Valid Tag DataIndex
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Address (showing bit positions)
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Block offsetIndex

Tag
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• Takes advantage of spatial locality to improve performance  

• Cache block address = (Block address) modulo (Number of cache 

blocks) 

• Block address = (byte address) / (bytes per block) 
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• Larger block size take advantage of spatial locality BUT: 

– Larger block size means larger miss penalty: 

• Takes longer time to fill up the block 

– If block size is too big relative to cache size, miss rate will go up 

• Too few cache blocks 

• Average Access Time =  

 Hit Time * (1 - Miss Rate)  +  Miss Penalty * Miss Rate 
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Hardware Complexity 

•  Set number = (Block number) modulo (Number of sets in the cache) 

•  Increased flexibility of block placement reduces probability of cache misses 
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• N entries for each Cache Index  

• Example: Two-way set associative cache 

– Cache Index selects a “set” from the cache 

– The two tags in the set are compared in parallel 

– Data is selected based on the tag result 



Tag size increases with 

higher level of associativity 
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• Forget about the Cache Index 

• Compare the Cache Tags of  all cache entries in parallel 

• Example: Block Size = 32 Byte blocks, we need N 27-bit comparators 

• By definition: Conflict Miss = 0 for a fully associative cache 



• Read misses bring blocks from memory  

• Write access requires careful maintenance of 
consistency between cache and main memory 

• Two write strategies: 
– Write through: write to both cache and memory 

• Read misses cannot result in writes 

• No allocation of a cache block is needed 

• Always combined with write buffers so that don’t wait for 
slow memory 

– Write back: write cache only; write to memory when 
cache block is replaced 
• Is block clean or dirty? 

• No writes to slow memory for repeated write accesses 

• Requires allocation of a cache block 
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•  Processor writes data into the cache and the write buffer 

•  Memory controller writes contents of the buffer to memory 

•  Increased write frequency can cause saturation of write buffer 

•  If CPU cycle time too fast and/or too many store instructions in a row: 

–  Store buffer will overflow no matter how big you make it 

–  The CPU Cycle Time get closer to DRAM Write Cycle Time 

•  Write buffer saturation can be handled by installing a second level (L2) cache 
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• Empirical results indicates less significance of replacement strategy with  

    increased cache sizes 

• Straight forward for Direct Mapped since every block has only one 
location 

• Set Associative or Fully Associative: 

–  Random: pick any block 

–  LRU (Least Recently Used) 

• requires tracking block reference 

• for two-way set associative cache, reference bit attached to every block 

• more complex hardware is needed for higher level of cache associativity 

2-way 4-way 8-way Associativity

Size
LRU Random LRU Random LRU Random

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%


