
Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides

Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

Control

Datapath

Secondary

Storage

(Disk)

Processor

R
e
g

is
te

rs

Main

Memory

(DRAM)

Second

Level

Cache

(SRAM)

O
n

-C
h

ip

C
a
c
h

e

Fastest Slowest

Smallest Biggest

Highest Lowest

Speed:

Size:

Cost:

Compiler
Hardware

Operating

System

• Temporal Locality (Locality in Time):

 Keep most recently accessed data items closer to the processor

• Spatial Locality (Locality in Space):

 Move blocks consists of contiguous words to the faster levels

Slower Level

Memory Faster Level

Memory
To Processor

From Processor
Block X

Block Y

• Hit: data appears in some block in the faster level (example: Block X)

– Hit Rate: the fraction of memory access found in the faster level

– Hit Time: Time to access the faster level which consists of

• Memory access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the slower level (Block Y)

– Miss Rate = 1 - (Hit Rate)

– Miss Penalty: Time to replace a block in the upper level + Time to

deliver the block the processor

• Hit Time << Miss Penalty

• Block identification
– How is a block found if it is in the upper (faster) level?

• Tag/Block

• Block placement
– Where can a block be placed in the upper (faster) level?

• Fully Associative, Set Associative, Direct Mapped

• Block replacement
– Which block should be replaced on a miss?

• Random, LRU

• Write strategy
– What happens on a write?

• Write Back or Write Through (with Write Buffer)

a. Before the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

b. After the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

Xn

X2X2

Requesting Xn

generates a miss and

the word Xn will be

brought from main

memory to cache

Issues:
• How do we know that a data item is in cache?

• If so, How to find it?

• Cache: level of hierarchy closest to processor

• Caches first appeared in research machines in early 1960s

• Virtually every general-purpose computer produced today

includes cache

00001 00101 01001 01101 10001 10101 11001 11101

Cache

Memory

Cache block address = (Block address) modulo (Number of cache blocks)

Memory words can be

mapped only to one

cache block

 Cache Data Valid Bit

Byte 0 Byte 1 Byte 3

 Cache Tag

Byte 2

• Worst case is to keep replacing

a block followed by a miss for it:

Ping Pong Effect

• To reduces misses:

– make the cache size bigger

– multiple entries for the same
Cache Index

cache

blocks Tag

Valid bit

Word

size

• Cache Size depends on:

– # cache blocks

– # address bits

– Word size

• Example:

– For n-bit address, 4-byte

word & 1024 cache

blocks:

– cache size =

1024 [(n-10 -2) + 1 + 32] bit

Address (showing bit positions)

20 10

Byte
offset

Valid Tag DataIndex

0

1

2

1021

1022

1023

Tag

Index

Hit Data

20 32

31 30 13 12 11 2 1 0

Address (showing bit positions)

16 12 Byte

offset

V Tag Data

Hit Data

16 32

4K

entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 4 32 1 0

• Takes advantage of spatial locality to improve performance

• Cache block address = (Block address) modulo (Number of cache

blocks)

• Block address = (byte address) / (bytes per block)

Miss
Penalty

Block Size

Miss
Rate

Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Average
Access

Time

Increased Miss Penalty
& Miss Rate

Block Size Block Size

• Larger block size take advantage of spatial locality BUT:

– Larger block size means larger miss penalty:

• Takes longer time to fill up the block

– If block size is too big relative to cache size, miss rate will go up

• Too few cache blocks

• Average Access Time =

 Hit Time * (1 - Miss Rate) + Miss Penalty * Miss Rate

1

2
Tag

Data

Block # 0 1 2 3 4 5 6 7

Search

Direct mapped

1

2
Tag

Data

Set # 0 1 2 3

Search

Set associative

1

2
Tag

Data

Search

Fully associative

Cache utilization

Hardware Complexity

• Set number = (Block number) modulo (Number of sets in the cache)

• Increased flexibility of block placement reduces probability of cache misses

Cache Data

Cache Block 0

Cache Tag Valid

: : :

Cache Data

Cache Block 0

Cache Tag Valid

: : :

Cache Index

Mux 0 1
Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

• N entries for each Cache Index

• Example: Two-way set associative cache

– Cache Index selects a “set” from the cache

– The two tags in the set are compared in parallel

– Data is selected based on the tag result

Tag size increases with

higher level of associativity

Address

22 8

V TagIndex

0

1

2

253

254

255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0

:

 Cache Data

Byte 0

0 4 31

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1 Byte 31 :

Byte 32 Byte 33 Byte 63 :

 Cache Tag

Byte Select

Ex: 0x01

X

X

X

X

X

• Forget about the Cache Index

• Compare the Cache Tags of all cache entries in parallel

• Example: Block Size = 32 Byte blocks, we need N 27-bit comparators

• By definition: Conflict Miss = 0 for a fully associative cache

• Read misses bring blocks from memory

• Write access requires careful maintenance of
consistency between cache and main memory

• Two write strategies:
– Write through: write to both cache and memory

• Read misses cannot result in writes

• No allocation of a cache block is needed

• Always combined with write buffers so that don’t wait for
slow memory

– Write back: write cache only; write to memory when
cache block is replaced
• Is block clean or dirty?

• No writes to slow memory for repeated write accesses

• Requires allocation of a cache block

Processor
Cache

Write Buffer

DRAM

• Processor writes data into the cache and the write buffer

• Memory controller writes contents of the buffer to memory

• Increased write frequency can cause saturation of write buffer

• If CPU cycle time too fast and/or too many store instructions in a row:

– Store buffer will overflow no matter how big you make it

– The CPU Cycle Time get closer to DRAM Write Cycle Time

• Write buffer saturation can be handled by installing a second level (L2) cache

Processor
Cache

Write Buffer

DRAM
L2

Cache

• Empirical results indicates less significance of replacement strategy with

 increased cache sizes

• Straight forward for Direct Mapped since every block has only one
location

• Set Associative or Fully Associative:

– Random: pick any block

– LRU (Least Recently Used)

• requires tracking block reference

• for two-way set associative cache, reference bit attached to every block

• more complex hardware is needed for higher level of cache associativity

2-way 4-way 8-way Associativity

Size
LRU Random LRU Random LRU Random

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

