
Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides

Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

• CPI = (1-branch%) * non-branch CPI

 + branch% * branch CPI

• CPI = (1-branch%) * 1

 + branch% * (1 + penalty)

• CPI = 1 + (branch% * penalty)

• penalty = not taken% * not taken cost

 + taken% * taken cost

• Instruction Level Parallelism increases
throughput
– Worse, the more advanced the method

• Deep pipeline, multiple functional units, n-issue per
clock, …

• Control dependence rapidly becomes the
limiting factor to the amount of ILP

• Compiler-based techniques can only rely
on static program properties to handle
control hazards

• Hardware-based techniques refer to the
dynamic behavior of the program to predict
the outcome of a branch

• Assume

– 20% of instructions are branches

– 53% of branches are taken

• Predict not taken

– CPI = 1 + 20% * (53%*1 + 47%*0) = 1.106

• Predict taken

– CPI = 1 + 20% * (53%*1 + 47%*1) = 1.2

Penalty for being wrong

Penalty for not having the address ready in time

Penalty for being wrong

• Predict not-taken: still stalls to wait for

branch target computation

• If address could be guessed, the branch

penalty becomes zero

• Cache predicted address based on

branch address

• Complications for complex predictors: do

we know in time?

• No branch delay if the a
branch prediction entry
is found and is correct

• A penalty of two cycle is
imposed for a wrong
prediction or a cache
miss

• Cache update on
misprediction and
misses can extend the
time penalty

• Dealing with misses or
misprediction is
expensive and should
be optimized

M
is

p
re

d
ic

ti
o

n
 r

a
te

• Branch target caching can be applied to expedite

unconditional jumps (branch folding) and returns for

procedure calls

• For calls from multiple sites, not clustered in time, a stack

implementation of the branch target cache can be useful

• Simplest dynamic branch-prediction scheme

– Use a branch history table to track when the branch was

taken and not taken

– Branch history table is a small 1-bit buffer indexed by lower
bits of PC address with the bit is set to reflect the whether or

not branch taken last time

• Performance = ƒ(accuracy, cost of misprediction)

• Problem: in a nested loop, 1-bit branch history table

will cause two mispredictions:

– End of loop case, when it exits instead of looping

– First time through loop on next time through code, when it

predicts exit instead of looping

• A two-bit buffer better captures the history of

the branch instruction

• A prediction must miss twice to change

• 2-bit is a special case of n-bit counter

– For every entry in the prediction buffer

– Increment/decrement if branch taken/not

– If the counter value is one half of the

maximum value (2n-1), predict taken

• Slow to change prediction, but can

change

S
P

E
C

8
9
 b

e
n

c
h

m
a
rk

s

• Prediction accuracy of a 4096-entry

prediction buffer ranges from 82% to

99% for the SPEC89 benchmarks

• The performance impact depends on

frequency of branching instructions

and the penalty of misprediction

S
P

E
C

8
9
 b

e
n

c
h

m
a
rk

s

 4096 entries (2 bits/entry) Unlimited entries (2 bits/entry)

• Buffer size has little impact

beyond a certain size

• Misprediction is because either:

–Wrong guess for that branch

–Got branch history of wrong

branch (different branches

with same low-bits of PC)

