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Recall Branch Penalties

CPIl = (1-branch%) * non-branch CPI
+ branch% * branch CPI

CPIl = (1-branch%) * 1
+ branch% * (1 + penalty)
CPl =1 + (branch% * penalty)

penalty = not taken% * not taken cost
+ taken% * taken cost



Branching Dilema

Instruction Level Parallelism increases
throughput

— Worse, the more advanced the method

* Deep pipeline, multiple functional units, n-issue per
clock, ...

Control dependence rapidly becomes the
limiting factor to the amount of ILP

Compiler-based techniques can only rely
on static program properties to handle
control hazards

Hardware-based techniques refer to the
dynamic behavior of the program to predict
the outcome of a branch



Recall 5-stage Prediction

e ASssume
— 20% of Iinstructions are branches
— 53% of branches are taken

* Predict not taken
—CPI=1+20% * (53%*1 + 47%*0) = 1.106
e Predict taken ™ Penalty for being wrong

—CPI=1+20% * (53%*1 + 47%*1) = 1.2

/ Penalty for being wrong

Penalty for not having the address ready in time



Branch Target Cache

Predict not-taken: still stalls to walt for
branch target computation

If address could be guessed, the branch
penalty becomes zero

Cache predicted address based on
branch address

Complications for complex predictors: do
we know In time?



Branch Target Cache
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Handling Branch Target Cache

* No branch delay if the a

Send PO to

branch prediction entry o

buffer

IS found and Is correct

« A penalty of two cycle is
Imposed for a wrong
prediction or a cache

miss
e (Cache update on
misprediction and ©

misses can extend the
time penalty i

Is
instruction
a taken
branch?

« Dealing with misses or
misprediction is 5
expensive and should

Mispredicted
branch, kill fetched
instruction; restart
fetch at other
target; delete
entry from
target buffer

be optimized



Return Address Cache

« Branch target caching can be applied to expedite
unconditional jumps (branch folding) and returns for
procedure calls

« For calls from multiple sites, not clustered in time, a stack

Implementation of the branch target cache can be useful
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Basic Branch Prediction

e Simplest dynamic branch-prediction scheme

— Use a branch history table to track when the branch was
taken and not taken

— Branch history table is a small 1-bit buffer indexed by lower
bits of PC address with the bit is set to reflect the whether or
not branch taken last time

* Performance = f(accuracy, cost of misprediction)

* Problem: in a nested loop, 1-bit branch history table
will cause two mispredictions:
— End of loop case, when it exits instead of looping

— First time through loop on next time through code, when it
predicts exit instead of looping



2-bit Branch History Table

* A two-bit buffer better captures the history of
the branch instruction

A prediction must miss twice to change

Taken
Not taken
Predict taken Predict taken
""""" Taken
Taken " Not taken
- Not taken

Predict not taken Predict not taken



N=-bit Predictors

« 2-bit Is a special case of n-bit counter
— For every entry in the prediction buffer
— Increment/decrement if branch taken/not

— If the counter value Is one half of the
maximum value (2n-1), predict taken

« Slow to change prediction, but can
change



SPECS89 benchmarks

Performance of 2-bit Branch
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 Prediction accuracy of a 4096-entry
prediction buffer ranges from 82% to
99% for the SPEC89 benchmarks

* The performance impact depends on
59, frequency of branching instructions

and the penalty of misprediction
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Optimal Size for 2-bit Branch

SPECS89 benchmarks
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