CMSC 611: Advanced
Computer Architecture

Branch Prediction

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides
Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

Recall Branch Penalties

CPIl = (1-branch%) * non-branch CPI
+ branch% * branch CPI

CPIl = (1-branch%) * 1
+ branch% * (1 + penalty)
CPl =1 + (branch% * penalty)

penalty = not taken% * not taken cost
+ taken% * taken cost

Branching Dilema

Instruction Level Parallelism increases
throughput

— Worse, the more advanced the method

* Deep pipeline, multiple functional units, n-issue per
clock, ...

Control dependence rapidly becomes the
limiting factor to the amount of ILP

Compiler-based techniques can only rely
on static program properties to handle
control hazards

Hardware-based techniques refer to the
dynamic behavior of the program to predict
the outcome of a branch

Recall 5-stage Prediction

e ASssume
— 20% of Iinstructions are branches
— 53% of branches are taken

* Predict not taken
—CPI=1+20% * (53%*1 + 47%*0) = 1.106
e Predict taken ™ Penalty for being wrong

—CPI=1+20% * (53%*1 + 47%*1) = 1.2

/ Penalty for being wrong

Penalty for not having the address ready in time

Branch Target Cache

Predict not-taken: still stalls to walt for
branch target computation

If address could be guessed, the branch
penalty becomes zero

Cache predicted address based on
branch address

Complications for complex predictors: do
we know In time?

Branch Target Cache

Predicted PC

Number of
entries

in branch-
target
buffer

No: instruction is

not predicted to be Branch
branch. Proceed normally predicted
taken or

Yes: then instruction is branch and predicted untaken

PC should be used as the next PC

Handling Branch Target Cache

* No branch delay if the a

Send PO to

branch prediction entry o

buffer

IS found and Is correct

« A penalty of two cycle is
Imposed for a wrong
prediction or a cache

miss
e (Cache update on
misprediction and ©

misses can extend the
time penalty i

Is
instruction
a taken
branch?

« Dealing with misses or
misprediction is 5
expensive and should

Mispredicted
branch, kill fetched
instruction; restart
fetch at other
target; delete
entry from
target buffer

be optimized

Return Address Cache

« Branch target caching can be applied to expedite
unconditional jumps (branch folding) and returns for
procedure calls

« For calls from multiple sites, not clustered in time, a stack

Implementation of the branch target cache can be useful
1 S0 40 SRS SIYS SO

m gCC O espresso ® i
o fpppp 4 doduc & tomceatv

Misprediction rate

oo

Number of entries in the return stack

Basic Branch Prediction

e Simplest dynamic branch-prediction scheme

— Use a branch history table to track when the branch was
taken and not taken

— Branch history table is a small 1-bit buffer indexed by lower
bits of PC address with the bit is set to reflect the whether or
not branch taken last time

* Performance = f(accuracy, cost of misprediction)

* Problem: in a nested loop, 1-bit branch history table
will cause two mispredictions:
— End of loop case, when it exits instead of looping

— First time through loop on next time through code, when it
predicts exit instead of looping

2-bit Branch History Table

* A two-bit buffer better captures the history of
the branch instruction

A prediction must miss twice to change

Taken
Not taken
Predict taken Predict taken
""""" Taken
Taken " Not taken
- Not taken

Predict not taken Predict not taken

N=-bit Predictors

« 2-bit Is a special case of n-bit counter
— For every entry in the prediction buffer
— Increment/decrement if branch taken/not

— If the counter value Is one half of the
maximum value (2n-1), predict taken

« Slow to change prediction, but can
change

SPECS89 benchmarks

Performance of 2-bit Branch

nasa’7

matrix300
tomcatv
doduc
spice
feppp
gcc

espresso
eqntott

i 1%

0%
. 1%

Buffer

 Prediction accuracy of a 4096-entry
prediction buffer ranges from 82% to
99% for the SPEC89 benchmarks

* The performance impact depends on
59, frequency of branching instructions

and the penalty of misprediction
9%

9%
12%
5%
18%

10%

1 1 1

0% 2%

4% 6% 8% 10% 12% 14% 16% 18%
Frequency of mispredictions

Optimal Size for 2-bit Branch

SPECS89 benchmarks

nasa7 [1% - Buffer size has little impact
00 0% beyond a certain size
ormonr, | 1% Misprediction is because either:
- —Wrong guess for that branch
doduc g:f)
; —Got branch history of wrong
spice o branch (different branches
oo With same low-bits of PC)
foppp P
12%
gcc 11%
espresso g:jz
eqgntott :llg::’,:
li 109%
10%
0% 2;’/0 4:% 6:’/0 8:% 1 0.°/o 1 2l°/o 14I»% 1 6.‘70 1 8.%

Frequency of mispredictions

W 4096 entries (2 bits/entry) B Unlimited entries (2 bits/entry)

