CMSC 611: Advanced Computer Architecture

Parallel Systems

Interconnection Networks

- Massively processor networks (MPP)
 - Thousands of nodes
 - Short distance (<~25m)
 - Traffic among nodes

- Local area network (LAN)
 - Hundreds of computers
 - A few kilometers
 - Many-to-one (clients-server)
- Wide area network (WAN)
 - Thousands of computers
 - Thousands of kilometers

ABCs of Networks

- Rules for communication are called the "protocol", message header and data called a "packet"
 - What if more than 2 computers want to communicate?
 - Need computer "address field" (destination) in packet
 - What if packet is garbled in transit?
 - Add "error detection field" in packet (e.g., CRC)
 - What if packet is lost?
 - Time-out, retransmit; ACK & NACK
 - What if multiple processes/machine?
 - Queue per process to provide protection

Performance Metrics

Total latency = Sender Overhead + Time of flight + $\frac{\text{Message size}}{\text{Bandwidth}}$ + Receiver overhead

- Bandwidth: maximum rate of propagating information
- Time of flight: time for 1st bit to reach destination
- Overhead: software & hardware time for encoding/decoding, interrupt handling, etc.

Network Interface Issues

- Where to connect network to computer?
 - Cache consistency to avoid flushes
 - memory bus
 - Low latency and high bandwidth
 - memory bus
 - Standard interface card?
 - I/O bus
 - Typically, MPP uses memory bus; while LAN, WAN connect through I/O bus

Ideal: high bandwidth, low latency, standard interface

Some Graphics Examples

- Pixel-Planes 4
- Pixel-Planes 5
- Pixel-Flow
- NVIDIA GeForce 6 series
- NVIDIA GeForce 8 series
- Intel Larrabee

Pixel-Planes 4

 512x512 SIMD array (full screen)

Pixel-Planes 5

- Message-passing
- ~40 i860 CPUs
- ~20 128x128 SIMD arrays (~80 tiles/screen)

Fuchs, et al., "Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics System Using Processor Enhanced Memories", SIGGRAPH 89

Pixel-Planes 5

Pixel-Flow

- Message-passing
- ~35 nodes, each with
 - 2 HP-PA 8000 CPUs
 - 128x64 SIMD array (~160 tiles/screen)

Eyles, et al., "PixelFlow: The Realization", Graphics Hardware 1997

Pixel-Flow

Eyles, et al., "PixelFlow: The Realization", Graphics Hardware 1997

PC Graphics Cards

NVIDIA 7800 / G70

NVIDIA 7800 / G70

NVIDIA G80

Streaming Processors

Intel Larrabee

Fixed Function Logic		In-Order CPU core	In-Order CPU core		In-Order CPU core	In-Order CPU core	ıces
		Interprocessor Ring Network					erfe
		Coherent L2 cache	Coherent L2 cache		Coherent L2 cache	Coherent L2 cache	& I/O Interfaces
		Coherent L2 cache	Coherent L2 cache		Coherent L2 cache	Coherent L2 cache	
		Interprocessor Ring Network					noı
		In-Order CPU core	In-Order CPU core		In-Order CPU core	In-Order CPU core	Memory

Larrabee Core

Larrabee: In Order Core

#CPU Cores	2 out-of-order	10 in-order
Instruction issue	4 per clock	2 per clock
VPU per core	4-wide SSE	16-wide vector
Single stream	4 per clock	2 per clock
Vector	8 per clock	160 per clock

Small, so fit more on chip

Larrabee ISA

- x86 base
- Cache (instructions & modes)
 - prefetch
 - early eviction
 - Direct from L1 as fast as registers
- Exposed dual issue
 - 2nd restricted set for second instruction
- 4 threads w/ independent registers
- Vector instructions

Larrabee Fixed Function

- Extra application-specific units
- Texture filtering
 - 12-40x faster than software

ic	In-Order CPU core	In-Order CPU core	1***	In-Order CPU core	In-Order CPU core	ices
og [Interprocessor Ring Network					erfe
tion I	Coherent L2 cache	Coherent L2 cache		Coherent L2 cache	Coherent L2 cache	Memory & I/O Interfaces
Fixed Function Logic	Coherent L2 cache	Coherent L2 cache	1	Coherent L2 cache	Coherent L2 cache	
xec	Interprocessor Ring Network					noı
E	In-Order CPU core	In-Order CPU core	•••	In-Order CPU core	In-Order CPU core	Mer

Larrabee Size

Larrabee Bandwidth

Larrabee Processing

Nehalem

