
Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides

Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

Characteristics IBM 3090 IBM UltraStar Integral 1820

Disk diameter (inches) 10.88 3.50 1.80

Formatted data capacity (MB) 22,700 4,300 21

MTTF (hours) 50,000 1,000,000 100,000

Number of arms/box 12 1 1

Rotation speed (RPM) 3,600 7,200 3,800

Transfer rate (MB/sec) 4.2 9-12 1.9

Power/box (watts) 2,900 13 2

MB/watt 8 102 10.5

Volume (cubic feet) 97 0.13 0.02

MB/cubic feet 234 33000 1050

• Two terms that are often confused:
– Reliability: Is anything broken?

– Availability: Is the system still available to the user?

• Availability can be improved by adding
hardware:
– Example: adding ECC on memory

• Reliability can only be improved by:
– Enhancing environmental conditions

– Building more reliable components

– Building with fewer components
• Improve availability may come at the cost of lower

reliability

• Increase potential throughput by
having many disk drives:
– Data is spread over multiple disk

– Multiple accesses are made to several disks

• Reliability is lower than a single disk:
– Reliability of N disks = Reliability of 1 Disk ÷ N

• (50,000 Hours ÷ 70 disks = 700 hours)

• Disk system MTTF: Drops from 6 years to 1 month

– Arrays (without redundancy) too unreliable to be
useful!

– But availability can be improved by adding
redundant disks (RAID):
• Lost information can be reconstructed from redundant

information

14” 10” 5.25” 3.5”

3.5”

Disk Array:
1 disk design

Conventional:
4 disk
designs

Low End High End

Disk Product Families

Replace Small # of Large Disks with Large # of Small Disks!

RAID level Failures survived Data disks Check disks

0 Non-redundant 0 8 0

1 Mirrored 1 8 8

2 Memory-style ECC 1 8 4

3 Bit-interleaved parity 1 8 1

4 Block-interleaved 1 8 1

5 Block-interleaved distributed parity 1 8 1

• Redundant Array of Inexpensive Disks (RIAD)
– Widely available and used in today’s market

– Files are "striped" across multiple spindles

– Redundancy yields high data availability despite low reliability

– Contents of a failed disk is reconstructed from data
redundantly stored in the disk array

– Drawbacks include capacity penalty to store redundant data
and bandwidth penalty to update a disk block

– Different levels based on replication level and recovery
techniques

Targeted for high I/O rate , high availability environments

recovery
group

• Each disk is fully duplicated onto its "shadow“

• Very high availability can be achieved

• Bandwidth sacrifice on write: Logical write =
two physical writes

• Reads may be optimized

• Most expensive solution: 100% capacity
overhead

P

10010011
11001101
10010011

. . .

logical record 1
0
0
1
0
0
1
1

1
1
0
0
1
1
0
1

1
0
0
1
0
0
1
1

0
0
1
1
0
0
0
0

Striped physical
records

 Parity computed across recovery group to protect against hard disk failures

 33% capacity cost for parity in this configuration: wider arrays reduce

 capacity costs, decrease expected availability, increase reconstruction time

 Arms logically synchronized, spindles rotationally synchronized

 (logically a single high capacity, high transfer rate disk)

Targeted for high bandwidth applications: Scientific, Image Processing

Block-Based Parity
 Block-based party leads to more efficient read access compared to RAID 3

 Designating a party disk allows recovery but will keep it idle in the absence

 of a disk failure

 RAID 5 distribute the party block to allow the use of all disk and enhance

 parallelism of disk access

RAID 4 RAID 5

A logical write
becomes four
physical I/Os

Independent writes
possible because of
interleaved parity

Reed-Solomon
Codes ("Q") for
protection during
reconstruction

D0 D1 D2 D3 P

D4 D5 D6 P D7

D8 D9 P D10 D11

D12 P D13 D14 D15

P D16 D17 D18 D19

D20 D21 D22 D23 P

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Disk Columns

Increasing
Logical

Disk
Addresses

Stripe

Stripe
Unit

Targeted for mixed
applications

D0 D1 D2 D3 P D0'

+

+

D0' D1 D2 D3 P'

new
data

old
data

old
parity

XOR

XOR

(1. Read) (2. Read)

(3. Write) (4. Write)

RAID-5: Small Write Algorithm

1 Logical Write = 2 Physical Reads + 2 Physical Writes

host
array

controller

single board
disk

controller

single board
disk

controller

single board
disk

controller

single board
disk

controller

host

adapter

manages interface
to host, DMA

control, buffering,
parity logic

physical device
control

often piggy-backed
in small format devices

striping software off-loaded from
host to array controller

no applications modifications

no reduction of host performance

Array

Controller

String
Controller

String
Controller

String
Controller

String
Controller

String
Controller

String
Controller

. . .

. . .

. . .

. . .

. . .

. . .

• Data Recovery Group: unit of data redundancy

• Redundant Support Components: fans, power
supplies, controller, cables

• End to End Data Integrity: internal parity protected
data paths

Fully dual redundant I/O Controller I/O Controller

Array Controller Array Controller

. . .

. . .

. . .

.

.

.

.
Recovery
Group

Goal: No Single
Points of
Failure

host host

with duplicated paths, higher performance can be
obtained when there are no failures

 Two methods are used to address the device:

 Special I/O instructions: (Intel 80X86, IBM 370)

– Specify both the device number and the command word

• Device number: the processor communicates this via a

set of wires normally included as part of the I/O bus

• Command word: this is usually send on the bus’s data lines

• Each devices maintain status register to indicate progress

– Instructions are privileged to prevent user tasks from directly accessing the I/O

devices

 Memory-mapped I/O: (Motorola/IBM PowerPC)

– Portions of the address space are assigned to I/O device

– Read and writes to those addresses are interpreted as commands to the I/O

devices

– User programs are prevented from issuing I/O operations directly:

• The I/O address space is protected by the address translation

• The OS needs to know when:

– The I/O device has completed an operation

– The I/O operation has encountered an error

• This can be accomplished in two different ways:

– Polling:

• The I/O device put information in a status register

• The OS periodically check the status register

– I/O Interrupt:

• An I/O interrupt is an externally stimulated event, asynchronous to

instruction execution but does NOT prevent instruction completion

• Whenever an I/O device needs attention from the processor, it interrupts the

processor from what it is currently doing

• Some processors deals with interrupt as special exceptions

These schemes requires heavy processor’s involvement and

suitable only for low bandwidth devices such as the keyboard

• Advantage:

– Simple: the processor is totally in control and does all

the work

• Disadvantage:

– Polling overhead can consume a lot of CPU time

CPU

IOC

device

Memory

Is the
data

ready?

read
data

store
data

yes no

done? no

yes

busy wait loop
not an efficient

way to use the CPU
unless the device

is very fast!

but checks for I/O
completion can be
dispersed among

computation
intensive code

• Advantage:

– User program progress is only halted during actual transfer

• Disadvantage: special hardware is needed to:

– Cause an interrupt (I/O device)

– Detect an interrupt (processor)

– Save the proper states to resume after the interrupt

(processor)

add
sub
and
or
nop

read
store
...
rti

memory

user
program (1) I/O

interrupt

(2) save PC

(3) interrupt
service addr

interrupt
service
routine (4)

CPU

IOC

device

Memory

:

• An I/O interrupt is just like the exceptions except:

– An I/O interrupt is asynchronous

– Further information needs to be conveyed

– Typically exceptions are more urgent than interrupts

• An I/O interrupt is asynchronous with respect to instruction execution:

– I/O interrupt is not associated with any instruction

– I/O interrupt does not prevent any instruction from completion

• You can pick your own convenient point to take an interrupt

• I/O interrupt is more complicated than exception:

– Needs to convey the identity of the device generating the interrupt

– Interrupt requests can have different urgencies:

• Interrupt request needs to be prioritized

• Priority indicates urgency of dealing with the interrupt

• high speed devices usually receive highest priority

• Direct Memory Access (DMA):

– External to the CPU

– Use idle bus cycles (cycle stealing)

– Act as a master on the bus

– Transfer blocks of data to or from memory

without CPU intervention

– Efficient for large data transfer, e.g. from disk

 Cache usage allows the processor to leave

enough memory bandwidth for DMA

CPU

IOC

device

Memory DMAC

CPU sends a starting address,
direction, and length count
to DMAC. Then issues "start".

DMAC provides handshake
signals for Peripheral
Controller, and Memory
Addresses and handshake
signals for Memory.

• How does DMA work?:

– CPU sets up and supply device id, memory

address, number of bytes

– DMA controller (DMAC) starts the access
and becomes bus master

– For multiple byte transfer, the DMAC

increment the address

– DMAC interrupts the CPU upon completion

For multiple bus system, each bus controller often contains DMA control logic

 With virtual memory systems: (pages would have physical and virtual addresses)

 Physical pages re-mapping to different virtual pages during DMA operations

 Multi-page DMA cannot assume consecutive addresses

 Solutions:
 Allow virtual addressing based DMA

 Add translation logic to DMA controller

 OS allocated virtual pages to DMA prevent re-mapping until DMA completes
 Partitioned DMA

 Break DMA transfer into multi-DMA operations, each is single page

 OS chains the pages for the requester

 In cache-based systems: (there can be two copies of data items)

 Processor might not know that the cache and memory pages are different

 Write-back caches can overwrite I/O data or makes DMA to read wrong data

 Solutions:

 Route I/O activities through the cache
 Not efficient since I/O data usually is not demonstrating temporal locality

 OS selectively invalidates cache blocks before I/O read or force write-back prior

 to I/O write
 Usually called cache flushing and requires hardware support

DMA allows another path to main memory with no cache and address translation

CPU IOP

Mem

D1

D2

Dn

. . .

main memory
bus

I/O
bus

CPU

IOP

(1) Issues
instruction
to IOP

memory

(2)

(3)

Device to/from memory
transfers are controlled
by the IOP directly.

IOP steals memory cycles.

OP Device Address

target device
where cmnds are

IOP looks in memory for commands

OP Addr Cnt Other

what
to do

where
to put
data

how
much

special
requests

 (4) IOP interrupts
 CPU when done

 An I/O processor (IOP) offload the CPU

 Some of the new processors, e.g.

 Motorola 860, include special purpose

 IOP for serial communication

