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Characteristics             IBM 3090      IBM UltraStar      Integral 1820 

Disk diameter (inches)    10.88            3.50           1.80 

Formatted data capacity (MB)  22,700           4,300              21 

MTTF (hours)    50,000        1,000,000         100,000 

Number of arms/box       12               1   1 

Rotation speed (RPM)     3,600            7,200            3,800 

Transfer rate (MB/sec)        4.2              9-12             1.9   

Power/box (watts)     2,900               13               2 

MB/watt              8              102            10.5 

Volume (cubic feet)        97              0.13            0.02 

MB/cubic feet        234             33000            1050 



• Two terms that are often confused: 
– Reliability: Is anything broken? 

– Availability: Is the system still available to the user? 

• Availability can be improved by adding 
hardware: 
– Example: adding ECC on memory 

• Reliability can only be improved by: 
– Enhancing environmental conditions 

– Building more reliable components 

– Building with fewer components 
• Improve availability may come at the cost of lower 

reliability 



• Increase potential throughput by  
having many disk drives: 
– Data is spread over multiple disk 

– Multiple accesses are made to several disks 

• Reliability is lower than a single disk: 
– Reliability of N disks = Reliability of 1 Disk ÷ N  

• (50,000 Hours ÷ 70 disks = 700 hours)  

• Disk system MTTF: Drops from 6 years  to 1 month 

– Arrays (without redundancy) too unreliable to be 
useful! 

– But availability can be improved by adding 
redundant disks (RAID): 
• Lost information can be reconstructed from redundant 

information 
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Replace Small # of Large Disks with Large # of Small Disks!  



RAID level Failures survived Data disks Check disks 

0 Non-redundant 0 8 0 

1 Mirrored 1 8 8 

2 Memory-style ECC 1 8 4 

3 Bit-interleaved parity 1 8 1 

4 Block-interleaved 1 8 1 

5 Block-interleaved distributed parity 1 8 1 

• Redundant Array of Inexpensive Disks (RIAD) 
– Widely available and used in today’s market 

– Files are "striped" across multiple spindles 

– Redundancy yields high data availability despite low reliability 

– Contents of a failed disk is reconstructed from data 
redundantly stored in the disk array 

– Drawbacks include capacity penalty to store redundant data 
and bandwidth penalty to update a disk block 

– Different levels based on replication level and recovery 
techniques 



Targeted for high I/O rate , high availability environments 

recovery 
group 

• Each disk is fully duplicated onto its "shadow“ 

• Very high availability can be achieved 

• Bandwidth sacrifice on write: Logical write = 
two physical writes 

• Reads may be optimized 

• Most expensive solution: 100% capacity 
overhead 
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 Parity computed across recovery group to protect against hard disk failures 

 33% capacity cost for parity in this configuration: wider arrays reduce  

    capacity costs, decrease expected availability, increase reconstruction time 

 Arms logically synchronized, spindles rotationally synchronized  

    (logically a single high capacity, high transfer rate disk) 

Targeted for high bandwidth applications: Scientific, Image Processing 



Block-Based Parity 
 Block-based party leads to more efficient read access compared to RAID 3 

 Designating a party disk allows recovery but will keep it idle in the absence  

    of a disk failure 

 RAID 5 distribute the party block to allow the use of all disk and enhance  

    parallelism of disk access 

RAID 4 RAID 5 
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Targeted for mixed 
applications 
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RAID-5: Small Write Algorithm 

1 Logical Write = 2 Physical Reads + 2  Physical Writes 
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• Data Recovery Group: unit of data redundancy 

• Redundant Support Components: fans, power 
supplies, controller, cables 

• End to End Data Integrity: internal parity protected 
data paths 
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 Two methods are used to address the device: 

 Special I/O instructions: (Intel 80X86, IBM 370) 

–  Specify both the device number and the command word 

• Device number: the processor communicates this via a 

set of wires normally included as part of the I/O bus 

• Command word: this is usually send on the bus’s data lines 

•  Each devices maintain status register to indicate progress  

–  Instructions are privileged to prevent user tasks from directly accessing the I/O 

devices 

 Memory-mapped I/O: (Motorola/IBM PowerPC) 

–  Portions of the address space are assigned to I/O device 

–  Read and writes to those addresses are interpreted as commands to the I/O 

devices 

–  User programs are prevented from issuing I/O operations directly: 

• The I/O address space is protected by the address translation 



•  The OS needs to know when: 

–  The I/O device has completed an operation 

–  The I/O operation has encountered an error 

•  This can be accomplished in two different ways: 

–  Polling: 

• The I/O device put information in a status register 

• The OS periodically check the status register 

–  I/O Interrupt: 

• An I/O interrupt is an externally stimulated event, asynchronous to 

instruction execution but does NOT prevent instruction completion 

• Whenever an I/O device needs attention from the processor, it  interrupts the 

processor from what it is currently doing 

• Some processors deals with interrupt as special exceptions 

These schemes requires heavy processor’s involvement and 

suitable only for low bandwidth devices such as the keyboard 



•  Advantage:  

–  Simple: the processor is totally in control and does all 

the work 

•  Disadvantage: 

–  Polling overhead can consume a lot of CPU time 
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•  Advantage: 

–  User program progress is only halted during actual transfer 

•  Disadvantage:  special hardware is needed to: 

–  Cause an interrupt (I/O device) 

–  Detect an interrupt (processor) 

–  Save the proper states to resume after the interrupt 

(processor) 
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•  An I/O interrupt is just like the exceptions except: 

–  An I/O interrupt is asynchronous 

–  Further information needs to be conveyed 

–  Typically exceptions are more urgent than interrupts 

•  An I/O interrupt is asynchronous with respect to instruction execution: 

–  I/O interrupt is not associated with any instruction 

–  I/O interrupt does not prevent any instruction from completion 

• You can pick your own convenient point to take an interrupt 

•  I/O interrupt is more complicated than exception: 

–  Needs to convey the identity of the device generating the interrupt 

–  Interrupt requests can have different urgencies: 

• Interrupt request needs to be prioritized 

• Priority indicates urgency of dealing with the interrupt 

• high speed devices usually receive highest priority 



•  Direct Memory Access (DMA): 

–  External to the CPU 

–  Use idle bus cycles (cycle stealing) 

–  Act as a master on the bus 

–  Transfer blocks of data to or from  memory 

without CPU intervention 

–  Efficient for large data transfer, e.g. from disk 

 Cache usage allows the processor to leave 

enough memory bandwidth for DMA 
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CPU sends a starting address,  
direction,  and length count  
to DMAC.  Then issues "start". 

DMAC provides handshake 
signals for Peripheral 
Controller, and Memory 
Addresses and handshake 
signals for Memory. 

•  How does DMA work?: 

–  CPU sets up and supply device id, memory 

address, number of bytes 

–  DMA controller (DMAC) starts the access 
and becomes bus master 

–  For multiple byte transfer, the DMAC 

increment the address 

–  DMAC interrupts the CPU upon completion 

For multiple bus system, each bus controller often contains DMA control logic 



 With virtual memory systems: (pages would have physical and virtual addresses)  

 Physical pages re-mapping to different virtual pages during DMA operations 

 Multi-page DMA cannot assume consecutive addresses 

    Solutions: 
 Allow virtual addressing based DMA 

 Add translation logic to DMA controller 

 OS allocated virtual pages to DMA prevent re-mapping until DMA completes 
 Partitioned DMA 

 Break DMA transfer into multi-DMA operations, each is single page 

 OS chains the pages for the requester 

 In cache-based systems: (there can be two copies of data items) 

 Processor might not know that the cache and memory pages are different 

 Write-back caches can overwrite I/O data or makes DMA to read wrong data 

    Solutions: 

 Route I/O activities through the cache  
 Not efficient since I/O data usually is not demonstrating temporal locality 

 OS selectively invalidates cache blocks before I/O read or force write-back prior  

     to I/O write 
 Usually called cache flushing and requires hardware support 

DMA allows another path to main memory with no cache and address translation 
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 (4) IOP interrupts 
      CPU when done 

 An I/O processor (IOP) offload the CPU 

 Some of the new processors, e.g.  

    Motorola 860, include special purpose  

    IOP for serial communication 


