
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

Shared MemoryShared Memory

Most slides adapted from David Patterson. Some from Mohomed Younis

Interconnection NetworksInterconnection Networks

• Local area network (LAN)
– Hundreds of computers

– A few kilometers

– Many-to-one (clients-server)

• Wide area network (WAN)
– Thousands of computers

– Thousands of kilometers

• Massively processor
networks (MPP)
– Thousands of nodes

– Short distance (<~25m)

– Traffic among nodes

ABCs of NetworksABCs of Networks

• Rules for communication are called the “protocol”,
message header and data called a "packet"
– What if more than 2 computers want to communicate?

• Need computer “address field” (destination) in packet

– What if packet is garbled in transit?

• Add “error detection field” in packet (e.g., CRC)

– What if packet is lost?

• Time-out, retransmit; ACK & NACK

– What if multiple processes/machine?

• Queue per process to provide protection

Sender

Receiver

Sender

Overhead

Transmission time

(size ÷ bandwidth)

Transmission time

(size ÷ bandwidth)

Time of

Flight

Receiver

Overhead

Transport Latency

Total Latency

(processor

busy)

(processor

busy)

Performance MetricsPerformance Metrics

• Bandwidth: maximum rate of propagating information

• Time of flight: time for 1st bit to reach destination

• Overhead: software & hardware time for encoding/decoding,

interrupt handling, etc.

!

Total latency = Sender Overhead + Time of flight +
Message size

Bandwidth
+ Receiver overhead

Time of

Flight

Ideal: high bandwidth, low

latency, standard interface

$

CPU

L2 $

Memory

Bus

Memory Bus Adaptor

I/O bus

I/O

Controller

I/O

Controller

NetworkNetwork

Network Interface IssuesNetwork Interface Issues

• Where to connect

network to computer?

– Cache consistency to

avoid flushes

• memory bus

– Low latency and high

bandwidth

• memory bus

– Standard interface card?

• I/O bus

– Typically, MPP uses

memory bus; while LAN,

WAN connect through I/O

bus

Centralized Shared MemoryCentralized Shared Memory

MIMDMIMD
• Processors share a single centralized memory

through a bus interconnect
– Memory contention: Feasible for small # processors

– Caches serve to:
• Increase bandwidth versus

bus/memory

• Reduce latency of access

• Valuable for both private data
and shared data

– Access to shared data is
optimized by replication
• Decreases latency

• Increases memory bandwidth

• Reduces contention

• Reduces cache coherence problems

A cache coherence problem arises when the cache

reflects a view of memory which is different from reality

Cache CoherencyCache Coherency

• A memory system is coherent if:

– P reads X, P writes X, no other processor writes X, P reads X

• Always returns value written by P

– P reads X, Q writes X, P reads X

• Returns value written by Q (provided sufficient W/R separation)

– P writes X, Q writes X

• Seen in the same order by all processors

Time Event
Cache

Contents for
CPU A

Cache
Contents for

CPU B

Memory
Contents for

location X

0 1

1 CPU A reads X 1 1

2 CPU B reads X 1 1 1

3 CPU A stores 0 into X 0 1 0

Potential HW CoherencyPotential HW Coherency

SolutionsSolutions

• Snooping Solution (Snoopy Bus)

– Send all requests for data to all processors

– Processors snoop to see if they have a copy

and respond accordingly

– Requires broadcast, since caching

information is at processors

– Works well with bus (natural broadcast

medium)

– Dominates for small scale machines (most

of the market)

Potential HW CoherencyPotential HW Coherency

SolutionsSolutions

• Directory-Based Schemes

– Keep track of what is being shared in one

centralized place

– Distributed memory ⇒ distributed directory

for scalability (avoids bottlenecks)

– Send point-to-point requests to processors

via network

– Scales better than Snooping

– Actually existed before Snooping-based

schemes

Basic Snooping ProtocolsBasic Snooping Protocols

• Write Invalidate Protocol:
– Write to shared data: an invalidate is sent to all caches which

snoop and invalidate any copies

– Cache invalidation will force a cache miss when accessing the
modified shared item

– For multiple writers only one will win the race ensuring
serialization of the write operations

– Read Miss:

• Write-through: memory is always up-to-date

• Write-back: snoop in caches to find most recent copy

Processor activity Bus activity
Contents

of CPU A’s
cache

Contents
of CPU B’s

cache

Contents of
memory

location X

 0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes a 1 to X Invalidation for X 1 0

CPU B reads X Cache miss for X 1 1 1

Basic Snooping ProtocolsBasic Snooping Protocols

• Write Broadcast (Update) Protocol (typically write
through):
– Write to shared data: broadcast on bus, processors snoop,

and update any copies

– To limit impact on bandwidth, track data sharing to avoid
unnecessary broadcast of written data that is not shared

– Read miss: memory is always up-to-date

– Write serialization: bus serializes requests!

Processor activity Bus activity
Contents
of CPU

A’s cache

Contents
of CPU

B’s cache

Contents
of memory
location X

 0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes a 1 to X Write broadcast of X 1 1 1

CPU B reads X 1 1 1

Invalidate vs. UpdateInvalidate vs. Update

• Write-invalidate has emerged as the

winner for the vast majority of designs

• Qualitative Performance Differences :

– Spatial locality

• WI: 1 transaction/cache block;

• WU: 1 broadcast/word

– Latency

• WU: lower write–read latency

• WI: must reload new value to cache

Invalidate vs. UpdateInvalidate vs. Update

• Because the bus and memory bandwidth

is usually in demand, write-invalidate

protocols are very popular

• Write-update can causes problems for

some memory consistency models,

reducing the potential performance gain

it could bring

• The high demand for bandwidth in write-

update limits its scalability for large

number of processors

An Example Snoopy ProtocolAn Example Snoopy Protocol

• Invalidation protocol, write-back cache

• Each block of memory is in one state:
– Clean in all caches and up-to-date in memory

(Shared)

– OR Dirty in exactly one cache (Exclusive)

– OR Not in any caches

• Each cache block is in one state (track these):
– Shared : block can be read

– OR Exclusive : cache has only copy, it is write-able,
and dirty

– OR Invalid : block contains no data

• Read misses: cause all caches to snoop bus

• Writes to clean line are treated as misses

Snoopy-Cache ControllerSnoopy-Cache Controller

• Complications
– Cannot update cache until

bus is obtained

– Two step process:

• Arbitrate for bus

• Place miss on bus and
complete operation

– Split transaction bus:

• Bus transaction is not
atomic

• Multiple misses can
interleave, allowing two
caches to grab block in
the Exclusive state

• Must track and prevent
multiple misses for one
block

Assumes memory

blocks A1 and A2 map

to same cache block,

initial cache state is

invalid

ExampleExample

Assumes memory

blocks A1 and A2 map

to same cache block

ExampleExample

Assumes memory

blocks A1 and A2 map

to same cache block

ExampleExample

ExampleExample

Assumes memory

blocks A1 and A2 map

to same cache block

ExampleExample

Assumes memory

blocks A1 and A2 map

to same cache block

ExampleExample

A1

A1

Assumes memory

blocks A1 and A2 map

to same cache block

Distributed DirectoryDistributed Directory

MultiprocessorsMultiprocessors
• Directory per cache that tracks state of every

block in every cache
– Which caches have a block, dirty vs. clean, ...

– Info per memory block vs. per cache block?
+ In memory => simpler protocol (centralized/one location)

– In memory => directory is f(memory size) vs. f(cache size)

• To prevent directory from being a bottleneck
– distribute directory entries with memory

– each tracks of
which processor
has their blocks

Directory ProtocolDirectory Protocol

• Similar to Snoopy Protocol: Three states

– Shared: Multiple processors have the block cached

and the contents of the block in memory (as well as

all caches) is up-to-date

– Uncached No processor has a copy of the block

(not valid in any cache)

– Exclusive: Only one processor (owner) has the

block cached and the contents of the block in

memory is out-to-date (the block is dirty)

• In addition to cache state, must track which

processors have data when in the shared state

– usually bit vector, 1 if processor has copy

Directory ProtocolDirectory Protocol

• Keep it simple(r):
– Writes to non-exclusive data => write miss

– Processor blocks until access completes

– Assume messages received and acted upon in
order sent

• Terms: typically 3 processors involved
– Local node where a request originates

– Home node where the memory location of an
address resides

– Remote node has a copy of a cache block, whether
exclusive or shared

• No bus and do not want to broadcast:
– interconnect no longer single arbitration point

– all messages have explicit responses

Example Directory ProtocolExample Directory Protocol

• Message sent to directory causes two

actions:

– Update the directory

– More messages to satisfy request

• We assume operations atomic, but they

are not; reality is much harder; must

avoid deadlock when run out of buffers

in network

Type SRC DEST MSG
Read miss local cache home directory P,A

P has read miss at A; request data and make P a read sharer

Write miss local cache home directory P,A

P has write miss at A; request data and make P exclusive owner

Invalidate home directory remote cache A

Invalidate shared data at A

Fetch home directory remote cache A

Fetch block A home; change A remote state to shared

Fetch/invalidate home directory remote cache A

Fetch block A home; invalidate remote copy

Data value reply home directory local cache D

Return data value from home memory

Data write back remote cache home directory A,D

Write back data value for A

Directory Protocol MessagesDirectory Protocol Messages

State machine for CPU

requests for each

memory block

Cache Controller StateCache Controller State

MachineMachine
• States identical to

snoopy case

– Transactions very

similar.

• Miss messages to

home directory

• Explicit invalidate &

data fetch requests

State machine

for Directory requests

for each

memory block

Directory Controller StateDirectory Controller State

MachineMachine
• Same states and

structure as the

transition diagram for an

individual cache

– Actions:

• update of directory state

• send messages to satisfy

requests

– Tracks all copies of each

memory block

• Sharers set

implementation can use a

bit vector of a size of #

processors for each block

ExampleExample

P2: Write 20 to A1

Assumes memory

blocks A1 and A2 map

to same cache block

P2: Write 20 to A1

WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

Assumes memory

blocks A1 and A2 map

to same cache block

ExampleExample

P2: Write 20 to A1

WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

Excl. A1 10

Assumes memory

blocks A1 and A2 map

to same cache block

ExampleExample

P2: Write 20 to A1

WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

Excl. A1 10

Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

A1

Write Back

Assumes memory

blocks A1 and A2 map

to same cache block

ExampleExample

ExampleExample

P2: Write 20 to A1

Excl. A1 10 DaRp P1 A1 0

Excl. A1 10

Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

A1

Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10

Assumes memory

blocks A1 and A2 map

to same cache block

ExampleExample

P2: Write 20 to A1

WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

Excl. A1 10

Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

A1

Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10

WrBk P2 A1 20 A1 Unca. {} 20

Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

WrMs P2 A2 A2 Excl. {P2} 0

Assumes memory

blocks A1 and A2 map

to same cache block

