
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

PipeliningPipelining

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides

Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

Pipeline HazardsPipeline Hazards

• Cases that affect instruction execution
semantics and thus need to be detected and corrected

• Hazards types
– Structural hazard: attempt to use a resource two different

ways at same time

• Single memory for instruction and data

– Data hazard: attempt to use item before it is ready

• Instruction depends on result of prior instruction still in the
pipeline

– Control hazard: attempt to make a decision before condition is
evaluated

• branch instructions

• Hazards can always be resolved by waiting

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

Detecting and ResolvingDetecting and Resolving

Structural HazardStructural Hazard

Slide: David Culler

!

Pipelining Speedup =
Average instruction time unpipelined

Average instruction time pipelined

=
CPI unpipelined

CPI pipelined
"

Clock cycle unpipelined

Clock cycle pipelined

!

Speedup =
CPI unpipelined

1 + Pipeline stall cycles per instruction
"

Clock cycle unpipelined

Clock cycle pipelined

Stalls & Pipeline PerformanceStalls & Pipeline Performance

!

CPI pipelined = Ideal CPI+ Pipeline stall cycles per instruction

= 1+ Pipeline stall cycles per instruction

!

Ideal CPI pipelined = 1

!

Speedup =
Pipeline depth

1 + Pipeline stall cycles per instruction

Assuming all pipeline stages are balanced

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Data HazardsData Hazards
Time (clock cycles)

IF ID/RF EX MEM WB

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Slide: David Culler

Reg

A
L
U

DMemIfetch Reg

I: add r1,r2,r3

J: sub r4,r1,r3

Three Generic Data HazardsThree Generic Data Hazards

• Read After Write (RAW)

InstrJ tries to read operand before InstrI writes

it

• Caused by a “Data Dependence” (in compiler

nomenclature). This hazard results from an

actual need for communication.

Slide: David Culler

• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” in compilers.
– This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and

– Reads are always in stage 2, and

– Writes are always in stage 5

I: sub r4,r1,r3

J: add r1,r2,r3

K: mul r6,r1,r7

Three Generic Data HazardsThree Generic Data Hazards

Slide: David Culler

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” in compilers
– This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline:
– All instructions take 5 stages, and

– Writes are always in stage 5

• Do see WAR and WAW in more complicated pipes

I: mul r1,r4,r3

J: add r1,r2,r3

K: sub r6,r1,r7

Three Generic Data HazardsThree Generic Data Hazards

Slide: David Culler

Time (clock cycles)

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Forwarding to Avoid DataForwarding to Avoid Data

HazardHazard

Slide: David Culler

HW Change for ForwardingHW Change for Forwarding

M
E

M
/W

R

I
D

/E
X

E
X

/M
E

M

Data
Memory

A
L
U

m
ux

m
ux

R
e
giste

rs

NextPC

Immediate

m
ux

Slide: David Culler

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even withData Hazard Even with

ForwardingForwarding

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Slide: David Culler

Resolving Load HazardsResolving Load Hazards

• Adding hardware? How? Where?

• Detection?

• Compilation techniques?

• What is the cost of load delays?

Slide: David Culler

Resolving the Load DataResolving the Load Data

HazardHazard

Time (clock cycles)

or r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
L
U

DMemIfetch Reg

Ifetch A
L
U

DMemBubble Reg

RegIfetch A
L
U

DMem RegBubble

Ifetch A
L
U

DMem RegBubble Reg

How is this different from the instruction issue stall?

Slide: David Culler

Try producing fast code for

a = b + c;

d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW a,Ra

LW Re,e

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

Fast code:

LW Rb,b

LW Rc,c

LW Re,e

ADD Ra,Rb,Rc

LW Rf,f

SW a,Ra

SUB Rd,Re,Rf

SW d,Rd

Software Scheduling to AvoidSoftware Scheduling to Avoid

Load HazardsLoad Hazards

Slide: David Culler

Instruction Set ConnectionInstruction Set Connection

• What is exposed about this organizational hazard in the

instruction set?

• k cycle delay?

– bad, CPI is not part of ISA

• k instruction slot delay

– load should not be followed by use of the value in the next k

instructions

• Nothing, but code can reduce run-time delays

• MIPS did the transformation in the assembler

Slide: David Culler

