CMSC 611: Advanced
Computer Architecture

Pipelining

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides
Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

Pipeline Hazards

« (Cases that affect instruction execution
semantics and thus need to be detected and corrected

* Hazards types

— Structural hazard: attempt to use a resource two different
ways at same time
» Single memory for instruction and data
— Data hazard: attempt to use item before it is ready
* Instruction depends on result of prior instruction still in the
pipeline
— Control hazard: attempt to make a decision before condition is
evaluated
* branch instructions

* Hazards can always be resolved by waiting

S0 Q3Q

J 403N

v

Detecting and Resolving

Structural Hazard

Time (clock cycles)

Cycle 1iCycle 2 ECycIe 3 Cycle 4§Cycle 5 Cycle 6§Cycle 7

Load t - Jl:
Instr 1 Ifenh:I:

InStr 2 Ifetch

Stall

>

DMem

Slide: David Culler

Stalls & Pipeline Performance

Average instruction time unpipelined
Average instruction time pipelined

_ CPI unpipelined « Clock cycle unpipelined

CPI pipelined Clock cycle pipelined

Pipelining Speedup =

Ideal CPI pipelined =1

CPI pipelined = Ideal CPI+ Pipeline stall cycles per instruction
=1+ Pipeline stall cycles per instruction

CPI unpipelined y Clock cycle unpipelined

Speedup = — : : —
1 + Pipeline stall cycles per instruction Clock cycle pipelined

Assuming all pipeline stages are balanced

Pipeline depth
1 + Pipeline stall cycles per instruction

Speedup =

JI4n3 N

S 0aQ3Q

Data Hazards
Time (clock cycles)

IF ID/RF EX MEM WB

ALY

add rl,r2,xr3 e}l |R

PMem

)
sub r4,rl,r3 e | R <At
and r6,rl,r7 et | 1R
or r8,rl,r9 el 1R

y Xor rl0,rl,rll i

Men

ALV

DMem

Slide: David Culler

Three Generic Data Hazards

* Read After Write (RAW)
Instr, tries to read operand before Instr, writes

it
<::I: add rl,r2,r3
J: sub rd4,rl,r3
« Caused by a “Data Dependence” (in compiler

nomenclature). This hazard results from an
actual need for communication.

Slide: David Culler

Three Generic Data Hazards

« Write After Read (WAR)
Instr, writes operand before Instr, reads it

I: sub r4,rl,r3
J: add rl,r2,r3
K: mul r6,rl,r7

« Called an “anti-dependence” in compilers.
— This results from reuse of the name “r1”.

« Can’t happen in MIPS 5 stage pipeline because:
— All instructions take 5 stages, and
— Reads are always in stage 2, and
— Writes are always in stage 5

Slide: David Culler

Three Generic Data Hazards

Write After Write (WAW)
Instr, writes operand before Instr, writes it.

<j:I: mul rl,r4,r3
J: add rl,r2,r3
K: sub r6,rl,xr7

Called an “output dependence” in compilers
— This also results from the reuse of name “r1”.

Can’t happen in MIPS 5 stage pipeline:
— All instructions take 5 stages, and
— Writes are always in stage 5

Do see WAR and WAW in more complicated pipes

Slide: David Culler

J34u3 N

S0aqQ3x0

Forwarding to Avoid Data
Hazard

Time (clock cycles)

add rl,r2, r3fe

sub r4,rl,r3

[fetcH

and r6,rl,r7

or r8,r1,r9 retcl | .E [.s bMen

xor rl0,rl,rll era I = BME

Slide: David Culler

HW Change for Forwarding

NextPC ‘

2

o X

O,

_’ (_A'_

o

«w 3 Data
S Memory

Immediate

Xnw
]

Slide: David Culler

Data Hazard Even with

Forwarding
Time (clock cycles)

I | 1w rl, 0(x2) ffetrH .E 0 .ﬁ DMem H
n y
s L
f Sub r4 , rl , r6 Ife‘l’ch .E I .g | Ha a
r. -
|
{
o and r6 7 rl , r’/ Tfetchf | .B | .'a DMem
r
d
i or r8 , rl ,]’.'9 Ife'rch .B | .E

DMem

Slide: David Culler

Resolving Load Hazards

Adding hardware? How? Where?
Detection?
Compilation techniques?

What is the cost of load delays?

I+ 3N

S0 aQ3Q

Resolving the Load Data
Hazard

Time (clock cycles)

DMem

lw r1, 0(r2) e | ra Dﬁ

“H

|
sub r4,r1,ré e W] ol [@’ -:E

and r6,r1,r7 et IW#jJ % lﬁ

DMem

or r8,|'1,l'9 DMem

How is this different from the instruction issue stall?

Slide: David Culler

Software Scheduling to Avoid

Load Hazards

Try producing fast code for

Rb,b
Rc,c

Re,e
Ra,Rb,Rc
Rf,f

a,Ra
Rd,Re,Rf
d,Rd

a=b+c;
d=e-f;
assuming a, b, ¢, d ,e, and f in memory.
Slow code: Fast code:
LW Rb,b LW
LW
LW Rc,c -
ADD Ra,Rb,Rc e
SW a,Ra LW
LW Re,e SW
LW Rff 23\,'3
SUB Rd,Re,Rf
SW d,Rd

Slide: David Culler

Instruction Set Connection

What is exposed about this organizational hazard in the
instruction set?

k cycle delay?
— bad, CPl is not part of ISA
k instruction slot delay

— load should not be followed by use of the value in the next k
instructions

Nothing, but code can reduce run-time delays
MIPS did the transformation in the assembler

Slide: David Culler

