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Pipeline HazardsPipeline Hazards

• Cases that affect instruction execution
semantics and thus need to be detected and corrected

• Hazards types
– Structural hazard: attempt to use a resource two different

ways at same time

• Single memory for instruction and data

– Data hazard: attempt to use item before it is ready

• Instruction depends on result of prior instruction still in the
pipeline

– Control hazard: attempt to make a decision before condition is
evaluated

• branch instructions

• Hazards can always be resolved by waiting
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! 

Pipelining Speedup =
Average instruction time unpipelined

Average instruction time pipelined

=
CPI unpipelined

CPI pipelined
"

Clock cycle unpipelined

Clock cycle pipelined

  

! 

Speedup  =
CPI unpipelined

1 +  Pipeline stall cycles per instruction
"

Clock cycle unpipelined

Clock cycle pipelined

Stalls & Pipeline PerformanceStalls & Pipeline Performance

  

! 

CPI pipelined = Ideal CPI+ Pipeline stall cycles per instruction

= 1+ Pipeline stall cycles per instruction

  

! 

Ideal CPI pipelined = 1

  

! 

Speedup  =
Pipeline depth

1 +  Pipeline stall cycles per instruction

Assuming all pipeline stages are balanced
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I: add r1,r2,r3

J: sub r4,r1,r3

Three Generic Data HazardsThree Generic Data Hazards

• Read After Write (RAW)

InstrJ tries to read operand before InstrI writes

it

• Caused by a “Data Dependence” (in compiler

nomenclature).  This hazard results from an

actual need for communication.
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• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” in compilers.
– This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
–  All instructions take 5 stages, and

–  Reads are always in stage 2, and

–  Writes are always in stage 5

I: sub r4,r1,r3

J: add r1,r2,r3

K: mul r6,r1,r7

Three Generic Data HazardsThree Generic Data Hazards
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• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” in compilers
– This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline:
–  All instructions take 5 stages, and

–  Writes are always in stage 5

• Do see WAR and WAW in more complicated pipes

I: mul r1,r4,r3

J: add r1,r2,r3

K: sub r6,r1,r7

Three Generic Data HazardsThree Generic Data Hazards
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Time (clock cycles)
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HW Change for ForwardingHW Change for Forwarding
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Time (clock cycles)
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Resolving Load HazardsResolving Load Hazards

• Adding hardware? How? Where?

• Detection?

• Compilation techniques?

• What is the cost of load delays?
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Resolving the Load DataResolving the Load Data
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How is this different from the instruction issue stall?
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Try producing fast code for

a = b + c;

d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW  a,Ra

LW Re,e

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

Fast code:

LW Rb,b

LW Rc,c

LW Re,e

ADD Ra,Rb,Rc

LW Rf,f

SW  a,Ra

SUB Rd,Re,Rf

SW d,Rd

Software Scheduling to AvoidSoftware Scheduling to Avoid

Load HazardsLoad Hazards
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Instruction Set ConnectionInstruction Set Connection

• What is exposed about this organizational hazard in the

instruction set?

• k cycle delay?

– bad, CPI is not part of ISA

• k instruction slot delay

– load should not be followed by use of the value in the next k

instructions

• Nothing, but code can reduce run-time delays

• MIPS did the transformation in the assembler
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