CMSC 611: Advanced
Computer Architecture

Pipelining

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides
Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

x 0 O —

S~ 0O Q0

Sequential Laundry

6PM 7 8 9 10 11

Midnight

>

| Time

R e Il Bl et B e il B e
30 40 20 30 40 20 30 40 20 30 40 20

® (ol
Tebar .
© aISL

(D =

« Washer takes 30 min, Dryer takes 40 min, folding takes 20 min
« Sequential laundry takes 6 hours for 4 loads
 If they learned pipelining, how long would laundry take?

Slide: Dave Patterson

x 0 O —

S~ 0O Q0

6 PM

11

Pipelined Laundry
7 8 9 10

Midnight

>

| Time

30 ilO 40 40 40 20
NSEE

JISP4r
© 8IS

' (D Spay

* Pipelining means start work as soon as possible
* Pipelined laundry takes 3.5 hours for 4 loads

Slide: Dave Patterson

x 0 O —

S~ 0O Q0

6 PM

Pipelining Lessons

7 8 9

> .

40 40 40 40 20 -

S|/
o1y |
=

Pipelining doesn’t help latency of single
task, it helps throughput of entire
workload

Pipeline rate limited by slowest pipeline
stage

Multiple tasks operating simultaneously
using different resources

Potential speedup = Number pipe
stages

Unbalanced lengths of pipe stages
reduces speedup

Time to “fill” pipeline and time to “drain”
it reduce speedup

Stall for Dependencies

Slide: Dave Patterson

MIPS Instruction Set

» RISC characterized by the following
features that simplify implementation:
— All ALU operations apply only on registers
— Memory is affected only by load and store

— Instructions follow very few formats and
typically are of the same size

31 26 21 16 11 6 0
op rs rt rd shamt funct
6 bits S bits 5 bits 5 bits S bits 6 bits
31 26 21 16 0
op rs rt immediate
6 bits 5 bits 5 bits 16 bits
31 26 0
op target address

6 bits 26 bits

MIPS Instruction Formats

* R-type (register)
— Most operations

« add $t1, $s3, $s4 # $t1 = $s3 + $s4
—rd, rs, rt all reqgisters

— op always 0, funct gives actual function

31 26

21

16

11

6

0

op

rs

rt

rd

shamt

funct

6 bits

5 bits

5 bits

5 bits

5 bits

6 bits

MIPS Instruction Formats

* |-type (immediate)
— ALU with one immediate operand
- addi $t1, $s2, 32 # $t1 = $s2 + 32

— Load, store within £215 of register
 Iw $10, 32($s2) # $s1 = $s2[32] or *(32+s2)

— Load immediate values

* lui $t0, 255 # $t0 = (255<<16)
- li $t0, 255
31 26 21 16 0
op rs rt immediate

6 bits 5 bits 5 bits 16 bits

MIPS Instruction Formats

* |-type (immediate)
— PC-relative conditional branch
— +21% from PC after instruction

* beq $s1, $s2, L1 # goto L1 if ($s1 = $s2)
* bne $s1, $s2, L1 # goto L1 if ($s1 # $s2)

31 26 21 16 0
op rs rt immediate

6 bits 5 bits 5 bits 16 bits

MIPS Instruction Formats

» J-type (jump)
— unconditional jump
*j L1 # goto L1

— Address is concatenated to top bits of PC
* Fixed addressing within 226

31 26 0
op target address
6 bits 26 bits

Single-cycle E

xecution

| ion decode/ By M § Write
: nstruction decode address : emory i
Instruction fetch register fetch calculation access back
i
é u z
s x :
NPC it I § :
ranc : :
4 ——m Cond 14 :
taken ' :
Instruction . : .
Registers !
memory = ALU |:
i output |:
§ Oata | .} 1mpD
» ; memory
e
16 { sign | 32 l E
™ extend L

R

Figure: Dave Patterson

Multi-Cycle Implementation of
MIPS

@ Instruction fetch cycle (IF)
IR < Mem[PC]; NPC < PC +4

@ Instruction decode/register fetch cycle (ID)

A < Regs[IRg 10l; B < Regs[IR+1_1s]; Imm € ((IR46)"® ##IR 15 31)
© Execution/effective address cycle (EX)

Memory ref: ALUOutput €< A + Imm;

Reg-Reg ALU: ALUOutput < A func B;

Reg-Imm ALU: ALUOutput < A op Imm;

Branch: ALUOutput € NPC + Imm; Cond < (A op 0)
O Memory access/branch completion cycle (MEM)

Memory ref: LMD < Mem[ALUOutput] or Mem(ALUOutput] < B;

Branch: if (cond) PC <ALUOutput;
© Write-back cycle (WB)

Reg-Reg ALU: Regs[IRs 2] € ALUOutput;

Reg-Imm ALU: Regs[IR{; 15] € ALUOutput;

Load: Regs[IR4 5] € LMD;

Multi-cycle Execution

Memory
access

: T Execute/ :

Instruction fetch register fetch Reopizassgl
M
u
: X

NPC

Instruction

Registers
memory &

Data
memory

Write
back

LMD

Imm

A\)

-
®-

Y

5]

Figure: Dave Patterson

Stages of Instruction

Execution

Cycle 1 éCycIe 2 Cycle 3 éCycIe4 éCycIe 5

Load | |fetch ‘

Reg/Dec

Exec “ Mem “ WB

* The load instruction is the longest
» All instructions follows at most the following five steps:

— |fetch: Instruction Fetch

Fetch the instruction from the Instruction Memory and update PC

— Reg/Dec: Registers Fetch and Instruction Decode
— Exec: Calculate the memory address

— Mem: Read the data from the Data Memory
— WB: Write the data back to the register file

Slide: Dave Patterson

Instruction Pipelining

- Start handling next instruction while the current
Instruction is in progress

* Feasible when different devices at different stages .
>

IFetchIDec IExec IMem IWB

IFetchIDec IExec IMem IWB

IFetchIDec IExec IMem IWB

IFetChIDec IExeC IMem IWB

IFetChIDeC IExeC IMem IWB

y Program Flow

IFetchIDec IExec IMem IWB

Time between instructions,qnpipelined

Time between instructions,inelined =
Pipefined Number of pipe stages

Pipelining improves performance by increasing instruction throughput

Program
execution
order

(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

A 4

Program
execution
order

(in instructions)

lw $1, 100($0)

Time

lw $2, 200($0)

Iw $3, 300($0)

v

Time

= = =
Pipelinin
6

Example of Instruction

2 4 8 10 12 14 16 18
T T T T T T T T T >
Instruction Data
fetch Reg ALY access Reg
< > Instruction Data
8 ns fetch g ALE access REE
& fourth e
instructions is 3 x 8 “ans
=24 ns
2 4 6 8 10 12 14
T T T T T T T >
Ins;ruction || Data | oo Time between first
etch access
& fourth
Instruction Data . i H
2 e e Reg| ALU | %8 |Reg instructions is 3 x 2
=6 ns
«—» ;
I

— P Pt P+ PpC——»
2ns 2ns 2ns 2ns 2ns

Ideal and upper bound for speedup is number of stages in the pipeline

< Cycle 1 > i< Cycle 2

Single Cycle

Clk |: I

Load

I Store

Waste

» Cycle time long enough for longest instruction
» Shorter instructions waste time

* No overlap

Figure: Dave Patterson

Multiple Cycle

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6: Cycle 7: Cycle 8: Cycle 9 §Cycle 10

Cik]|

ELoad

-

Store

:R-type

E:Ifetchl Reg I Exec I Mem I Wr EIfetchI Reg I Exec I Mem [Ifetch

No overlap

Cycle time long enough for longest stage
Shorter stages waste time
Shorter instructions can take fewer cycles

Figure: Dave Patterson

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6: Cycle 7: Cycle 8: Cycle 9 iCycle 10

—i i iy

Load Ifetchl Reg I Exec I Mem I Wr

Store Ifetchl Reg I Exec I Mem I Wr

R-type Ifetchl Reg I Exec I Mem I Wr

Cycle time long enough for longest stage
Shorter stages waste time

No additional benefit from shorter instructions
Overlap instruction execution

Figure: Dave Patterson

Pipeline Performance

Pipeline increases the instruction throughput
— not execution time of an individual instruction

An individual instruction can be slower:
— Additional pipeline control
— Imbalance among pipeline stages

Suppose we execute 100 instructions:

— Single Cycle Machine
* 45 ns/cycle x 1 CPI x 100 inst = 4500 ns

— Multi-cycle Machine
* 10 ns/cycle x 4.2 CPI (due to inst mix) x 100 inst = 4200 ns

— lIdeal 5 stages pipelined machine
* 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

Lose performance due to fill and drain

Pipeline Datapath

Every stage must be completed in one clock cycle to avoid stalls

Values must be latched to ensure correct execution of
instructions

The PC multiplexer has moved to the IF stage to prevent two
instructions from updating the PC simultaneously (in case of
branch instruction)

Fo o B e e e
M <
X ‘.
IRe..10
IR
11
Instruction| IR "
memory Y MEMwB.IR |Redisters
- Data
memory | gl o
u
X
i Sign 32
-

Pipeline Stage Interface

Stage Any Instruction
IF/ID.IR ¢ MEMI[PC] ;
IF [IFID.NPC,PC ¢ (if ((EX/MEM.opcode == branch) & EX/MEM.cond)
{EXIMEM.ALUOutput } else {PC +4});
ID/EX.A = Regs][IF/ID. IR ¢_10]; ID/EX.B €<Regs[IF/ID. IR 11_1s];
ID ID/EX.NPC <IF/ID.NPC ; ID/EX.IR €IF/ID.IR;
ID/EX.Imm € (IF/ID. IR 1) "® ## IF/ID. IR 16.31;
ALU Load or Store Branch

EX/MEM.IR = ID/EX.IR; EX/MEM.IR < ID/EX.IR;

EX/MEM. ALUOutput €< EX/MEM.ALUOutput €« EX/MEM.ALUOutput <

ID/EX.A func ID/EX.B; ID/EX.A + ID/EX.Imm; ID/EX.NPC + ID/EX.Imm;

Or

EX | EXMEM.ALUOutput ¢

ID/EX.A op ID/EX.Imm;

EX/MEM.cond € 0;
EX/MEM.cond € 0; EX/MEM.cond €«
EX/MEM.B <ID/EX.B; (ID/EX.A op 0);

MEM/WB.IR €EX/MEM.IR; MEM/WB.IR € EX/MEM.IR;

MEM/WB.ALUOutput < MEM/WB.LMD <«

EX/MEM.ALUOutput; Mem[EX/MEM.ALUOutput] ;

MEM Or

Mem[EX/MEM.ALUOutput] €<
EX/MEM.B ;

Regs[MEM/WB. IR 16.20] € For load only:

EM/WB.ALUOutput; Regs[MEM/WB. IR 11 15] €

WB Or MEM/WB.LMD;
Regs[MEM/WB. IR 11.15] €
MEM/WB.ALUOutput ;

Pipeline Hazards

« (Cases that affect instruction execution
semantics and thus need to be detected and corrected

* Hazards types

— Structural hazard: attempt to use a resource two different
ways at same time
« Single memory for instruction and data
— Data hazard: attempt to use item before it is ready
* Instruction depends on result of prior instruction still in the
pipeline
— Control hazard: attempt to make a decision before condition
Is evaluated
* branch instructions

* Hazards can always be resolved by waiting

34033 N

S 0 Q3 Q

Visualizing Pipelining

Time (clock cyc/es)

Cycle 1: Cycle 2 Cycle 3 Cycle 4 iCycle 5 Cycle 6: Cycle 7

Ifetch I 9
1:
Ifetch I

—>

Slide: David Culler

J 4+ u 3N

v

S 60 Q3 Q

Example: One Memory
Port/Structural Hazard

Time (clock cycles)

Cycle IECycIe 2 ECycIe 3 Cycle 4§Cycle 5 Cycle 6§Cycle 7

Load Ifmh:l: 3
Instr 1 g Ifetch
Instr 2 9
Instr 3 DMem
Instr 4% _ .

ESTr'uc‘rufr'al Hazéxrd

>

Slide: David Culler

Resolving Structural Hazards

1. Walit

— Must detect the hazard
Easier with uniform ISA

— Must have mechanism to stall
Easier with uniform pipeline organization
2. Throw more hardware at the problem

— Use instruction & data cache rather than
direct access to memory

J 4+ u 3N

v

S 60 Q3 Q

Detecting and Resolving
Structural Hazard

Time (clock cycles)

Cycle IECycIe 2 ECycIe 3 Cycle 4§Cycle 5 Cycle 6§Cycle 7

>

Load Ife*ch:I: R

Instr 1 Ifetch

Instr 2 Ifetch

Stall

Instr 3 Ifetch

Slide: David Culler

Stalls & Pipeline Performance

Average instruction time unpipelined
Average instruction time pipelined

_ CPI unpipelined « Clock cycle unpipelined

CPI pipelined Clock cycle pipelined

Pipelining Speedup =

Ideal CPI pipelined =1

CPI pipelined = Ideal CPI+ Pipeline stall cycles per instruction
=1+ Pipeline stall cycles per instruction

CPI unpipelined y Clock cycle unpipelined

Speedup = — : : —
1 + Pipeline stall cycles per instruction Clock cycle pipelined

Assuming all pipeline stages are balanced

Pipeline depth
1 + Pipeline stall cycles per instruction

Speedup =

