
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

PipeliningPipelining

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides

Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

• Washer takes 30 min, Dryer takes 40 min, folding takes 20 min

• Sequential laundry takes 6 hours for 4 loads

• If they learned pipelining, how long would laundry take?

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

Slide: Dave Patterson

Time

A

B

C

D

T

a

s

k

O

r

d

e

r

Sequential LaundrySequential Laundry

• Pipelining means start work as soon as possible

• Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T

a

s

k

O

r

d

e

r

Time

30 40 40 40 40 20

Slide: Dave Patterson

Pipelined LaundryPipelined Laundry

Pipelining LessonsPipelining Lessons

• Pipelining doesn’t help latency of single

task, it helps throughput of entire

workload

• Pipeline rate limited by slowest pipeline

stage

• Multiple tasks operating simultaneously

using different resources

• Potential speedup = Number pipe

stages

• Unbalanced lengths of pipe stages

reduces speedup

• Time to “fill” pipeline and time to “drain”

it reduce speedup

• Stall for Dependencies

Time

6 PM 7 8 9

Slide: Dave Patterson

A

B

C

D

T

a

s

k

O

r

d

e

r

30 40 40 40 40 20

op target address

02631

6 bits 26 bits

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

MIPS Instruction SetMIPS Instruction Set

• RISC characterized by the following
features that simplify implementation:

– All ALU operations apply only on registers

– Memory is affected only by load and store

– Instructions follow very few formats and
typically are of the same size

MIPS Instruction FormatsMIPS Instruction Formats

• R-type (register)

– Most operations

• add $t1, $s3, $s4 # $t1 = $s3 + $s4

– rd, rs, rt all registers

– op always 0, funct gives actual function

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

MIPS Instruction FormatsMIPS Instruction Formats

• I-type (immediate)

– ALU with one immediate operand

• addi $t1, $s2, 32 # $t1 = $s2 + 32

– Load, store within ±215 of register

• lw $t0, 32($s2) # $s1 = $s2[32] or *(32+s2)

– Load immediate values

• lui $t0, 255 # $t0 = (255<<16)

• li $t0, 255

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

MIPS Instruction FormatsMIPS Instruction Formats

• I-type (immediate)
– PC-relative conditional branch

– ±215 from PC after instruction
• beq $s1, $s2, L1 # goto L1 if ($s1 = $s2)

• bne $s1, $s2, L1 # goto L1 if ($s1 ! $s2)

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

MIPS Instruction FormatsMIPS Instruction Formats

• J-type (jump)

– unconditional jump

• j L1 # goto L1

– Address is concatenated to top bits of PC

• Fixed addressing within 226

op target address

02631

6 bits 26 bits

Single-cycle ExecutionSingle-cycle Execution

! Figure: Dave Patterson

! Instruction fetch cycle (IF)

IR ! Mem[PC]; NPC ! PC + 4

" Instruction decode/register fetch cycle (ID)

A ! Regs[IR6..10]; B ! Regs[IR11..15]; Imm ! ((IR16)
16 ##IR16..31)

Execution/effective address cycle (EX)

Memory ref: ALUOutput ! A + Imm;

Reg-Reg ALU: ALUOutput ! A func B;

Reg-Imm ALU: ALUOutput ! A op Imm;

Branch: ALUOutput ! NPC + Imm; Cond ! (A op 0)

$ Memory access/branch completion cycle (MEM)

Memory ref: LMD ! Mem[ALUOutput] or Mem(ALUOutput] ! B;

Branch: if (cond) PC !ALUOutput;

% Write-back cycle (WB)

Reg-Reg ALU: Regs[IR16..20] ! ALUOutput;

Reg-Imm ALU: Regs[IR11..15] ! ALUOutput;

Load: Regs[IR11..15] ! LMD;

Multi-Cycle Implementation ofMulti-Cycle Implementation of

MIPSMIPS

! " $ %

Multi-cycle ExecutionMulti-cycle Execution

#
Figure: Dave Patterson

Stages of InstructionStages of Instruction

ExecutionExecution

• The load instruction is the longest

• All instructions follows at most the following five steps:

– Ifetch: Instruction Fetch

• Fetch the instruction from the Instruction Memory and update PC

– Reg/Dec: Registers Fetch and Instruction Decode

– Exec: Calculate the memory address

– Mem: Read the data from the Data Memory

– WB: Write the data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WB
Load

Slide: Dave Patterson

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB
Program Flow

Time

 Pipelining improves performance by increasing instruction throughput

Instruction PipeliningInstruction Pipelining

• Start handling next instruction while the current
instruction is in progress

• Feasible when different devices at different stages

!

Time between instructionspipelined =
Time between instructionsnonpipelined

Number of pipe stages

Ideal and upper bound for speedup is number of stages in the pipeline

Instruction
fetch

Reg ALU
Data
access

Reg

8 ns
Instruction
fetch

Reg ALU
Data
access

Reg

8 ns
Instruction
fetch

8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program
execution
order
(in instructions)

Instruction
fetch

Reg ALU
Data
access

Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction

fetch
Reg ALU

Data

access
Reg

2 ns
Instruction
fetch

Reg ALU
Data
access

Reg

2 ns 2 ns 2 ns 2 ns 2 ns

Program
execution
order
(in instructions)

Time between first
& fourth
instructions is 3 ! 2

= 6 ns

Time between first
& fourth
instructions is 3 ! 8

= 24 ns

Example of InstructionExample of Instruction

PipeliningPipelining

Single CycleSingle Cycle

Clk

Load Store Waste

Cycle 1 Cycle 2

Figure: Dave Patterson

• Cycle time long enough for longest instruction

• Shorter instructions waste time

• No overlap

Multiple CycleMultiple Cycle

Figure: Dave Patterson

• Cycle time long enough for longest stage

• Shorter stages waste time

• Shorter instructions can take fewer cycles

• No overlap

Cycle 1

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Ifetch Reg Exec Mem

Load Store

Ifetch

R-type

Clk

PipelinePipeline

Figure: Dave Patterson

• Cycle time long enough for longest stage

• Shorter stages waste time

• No additional benefit from shorter instructions

• Overlap instruction execution

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Clk

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec Mem WrStore

Ifetch Reg Exec Mem WrR-type

Pipeline PerformancePipeline Performance

• Pipeline increases the instruction throughput
– not execution time of an individual instruction

• An individual instruction can be slower:
– Additional pipeline control

– Imbalance among pipeline stages

• Suppose we execute 100 instructions:
– Single Cycle Machine

• 45 ns/cycle x 1 CPI x 100 inst = 4500 ns

– Multi-cycle Machine
• 10 ns/cycle x 4.2 CPI (due to inst mix) x 100 inst = 4200 ns

– Ideal 5 stages pipelined machine
• 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

• Lose performance due to fill and drain

Data Stationary

Pipeline Pipeline DatapathDatapath

• Every stage must be completed in one clock cycle to avoid stalls

• Values must be latched to ensure correct execution of
instructions

• The PC multiplexer has moved to the IF stage to prevent two
instructions from updating the PC simultaneously (in case of
branch instruction)

Pipeline Stage InterfacePipeline Stage Interface
Stage Any Instruction

IF
IF/ID.IR !MEM[PC] ;

IF/ID.NPC,PC ! (if ((EX/MEM.opcode == branch) & EX/MEM.cond)

{EX/MEM.ALUOutput } else { PC + 4 }) ;

ID
ID/EX.A = Regs[IF/ID. IR 6..10]; ID/EX.B !Regs[IF/ID. IR 11..15];

ID/EX.NPC !IF/ID.NPC ; ID/EX.IR !IF/ID.IR;

ID/EX.Imm ! (IF/ID. IR 16)
 16

 ## IF/ID. IR 16..31;

ALU Load or Store Branch

EX

EX/MEM.IR = ID/EX.IR;

EX/MEM. ALUOutput !
ID/EX.A func ID/EX.B;

Or

EX/MEM.ALUOutput !
ID/EX.A op ID/EX.Imm;

EX/MEM.cond ! 0;

EX/MEM.IR ! ID/EX.IR;

EX/MEM.ALUOutput !
ID/EX.A + ID/EX.Imm;

EX/MEM.cond ! 0;

EX/MEM.B !ID/EX.B;

EX/MEM.ALUOutput !
ID/EX.NPC + ID/EX.Imm;

EX/MEM.cond !
(ID/EX.A op 0);

MEM

MEM/WB.IR !EX/MEM.IR;

MEM/WB.ALUOutput !
EX/MEM.ALUOutput;

MEM/WB.IR ! EX/MEM.IR;

MEM/WB.LMD !
Mem[EX/MEM.ALUOutput] ;

Or

Mem[EX/MEM.ALUOutput] !
EX/MEM.B ;

WB

Regs[MEM/WB. IR 16..20] !
EM/WB.ALUOutput;

Or

Regs[MEM/WB. IR 11..15] !
MEM/WB.ALUOutput ;

For load only:

Regs[MEM/WB. IR 11..15] !
MEM/WB.LMD;

Pipeline HazardsPipeline Hazards

• Cases that affect instruction execution
semantics and thus need to be detected and corrected

• Hazards types
– Structural hazard: attempt to use a resource two different

ways at same time
• Single memory for instruction and data

– Data hazard: attempt to use item before it is ready
• Instruction depends on result of prior instruction still in the

pipeline

– Control hazard: attempt to make a decision before condition
is evaluated
• branch instructions

• Hazards can always be resolved by waiting

Visualizing PipeliningVisualizing Pipelining

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Slide: David Culler

Example: One MemoryExample: One Memory

Port/Structural HazardPort/Structural Hazard

I
n

s
t
r.

O
r

d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

DMem

Structural Hazard

Slide: David Culler

Resolving Structural HazardsResolving Structural Hazards

1. Wait

– Must detect the hazard

• Easier with uniform ISA

– Must have mechanism to stall

• Easier with uniform pipeline organization

2. Throw more hardware at the problem

– Use instruction & data cache rather than
direct access to memory

I
n

s
t
r.

O
r

d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
L
U

DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

Detecting and ResolvingDetecting and Resolving

Structural HazardStructural Hazard

Slide: David Culler

!

Pipelining Speedup =
Average instruction time unpipelined

Average instruction time pipelined

=
CPI unpipelined

CPI pipelined
"

Clock cycle unpipelined

Clock cycle pipelined

!

Speedup =
CPI unpipelined

1 + Pipeline stall cycles per instruction
"

Clock cycle unpipelined

Clock cycle pipelined

Stalls & Pipeline PerformanceStalls & Pipeline Performance

!

CPI pipelined = Ideal CPI+ Pipeline stall cycles per instruction

= 1+ Pipeline stall cycles per instruction

!

Ideal CPI pipelined = 1

!

Speedup =
Pipeline depth

1 + Pipeline stall cycles per instruction

Assuming all pipeline stages are balanced

