
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

Pipelining & Instruction Level ParallelismPipelining & Instruction Level Parallelism

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides

Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science



Pipeline HazardsPipeline Hazards

• Cases that affect instruction execution
semantics and thus need to be detected and corrected

• Hazards types
– Structural hazard: attempt to use a resource two different

ways at same time

• Single memory for instruction and data

– Data hazard: attempt to use item before it is ready

• Instruction depends on result of prior instruction still in the
pipeline

– Control hazard: attempt to make a decision before condition is
evaluated

• branch instructions

• Hazards can always be resolved by waiting



Control Hazard on BranchesControl Hazard on Branches

Three Stage StallThree Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5 

18: or  r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Slide: David Culler



Example: Branch Stall ImpactExample: Branch Stall Impact

• If 30% branch, 3-cycle stall significant!

• Two part solution:

– Determine branch taken or not sooner, AND

– Compute taken branch address earlier

• MIPS branch tests if register = 0 or ! 0

• MIPS Solution:

– Move Zero test to ID/RF stage

– Adder to calculate new PC in ID/RF stage

– 1 clock cycle penalty for branch versus 3

Slide: David Culler



Pipelined MIPS Pipelined MIPS DatapathDatapath

Add

Zero?

Figure: Dave Patterson



Four Branch HazardFour Branch Hazard

AlternativesAlternatives
1. Stall until branch direction is clear

2. Predict Branch Not Taken
– Execute successor instructions in sequence

– “Squash” instructions in pipeline if branch taken

– Advantage of late pipeline state update

– 47% MIPS branches not taken on average

– PC+4 already calculated, so use it to get next instruction

3. Predict Branch Taken
– 53% MIPS branches taken on average

– But haven’t calculated branch target address in MIPS

• MIPS still incurs 1 cycle branch penalty

• Other machines: branch target known before outcome

Slide: David Culler



4. Delayed Branch
– Define branch to take place AFTER a following

instruction
branch instruction

sequential successor1

sequential successor2

........
sequential successorn

........

branch target if taken

– 1 slot delay allows proper decision and branch
target address in 5 stage pipeline

– MIPS uses this

Branch delay of length n

Four Branch HazardFour Branch Hazard

AlternativesAlternatives

Slide: David Culler



Delayed BranchDelayed Branch

• Where to get branch delay slot instructions?

– Before branch instruction

– From the target address

• only valuable when branch taken

– From fall through

• only valuable when branch not taken

– Canceling branches allow more slots to be filled

• Compiler effectiveness for single delay slot:

– Fills about 60% of branch delay slots

– About 80% of instructions executed in branch delay slots useful in

computation

– 48% (60% x 80%) of slots usefully filled

• Delayed Branch downside: 7-8 stage pipelines, multiple

instructions issued per clock (superscalar)

Slide: David Culler



Example: Evaluating BranchExample: Evaluating Branch

AlternativesAlternatives

Assume:

14% Conditional & Unconditional

65% Taken; 48% Delay slots not usefully filled

  

! 

Pipeline speedup =  Pipeline depth
1 +  Pipeline stall CPI

=  Pipeline depth
1 +  Branch frequency"Branch penalty

4.69

4.58

4.39

3.52

Pipeline

Speedup

1.391.070.48Delayed branch

1.301.091.00Predict not taken

1.251.141.00Predict taken

1.001.423.00Stall pipeline

Speedup

vs stall

CPIBranch

Penalty

Scheduling Scheme

Slide: David Culler



Best scenario Good for loops Good taken strategy

R4 must be

temp reg.

Scheduling Branch-Delay SlotsScheduling Branch-Delay Slots



Branch-Delay SchedulingBranch-Delay Scheduling

RequirementsRequirements
Scheduling 

Strategy 
Requirements 

Improves performance 
when? 

(a) From before Branch must not depend on the 
rescheduled instructions 

Always 

(b) From target Must be OK to execute rescheduled 
instructions if branch is not taken. 

May need to duplicate instructions. 

When branch is taken. May 
enlarge programs if 

instructions are duplicated. 

(c) From fall  

      through 

Must be okay to execute instructions 
if branch is taken. 

When branch is not taken. 

 

• Limitation on delayed-branch scheduling arise from:

– Restrictions on instructions scheduled into the delay slots

– Ability to predict at compile-time whether a branch is likely to be
taken

• May have to fill with a no-op instruction

– Average 30% wasted

• Additional PC is needed to allow safe operation in case of
interrupts (more on this later)



In
s

tr
u

c
ti

o
n

s
 b

e
tw

e
e

n

m
is

p
re

d
ic

ti
o

n

Predict taken

Profile based

Static Branch PredictionStatic Branch Prediction

• Examination of program behavior

– Assume branch is usually taken based on statistics but misprediction

rate still 9%-59%

• Predict on branch direction forward/backward based on statistics

and code generation convention

– Profile information from earlier program runs



Exception TypesException Types

• I/O device request

• Breakpoint

• Integer arithmetic

overflow

• FP arithmetic

anomaly

• Page fault

• Misaligned memory

accesses

• Memory-protection

violation

• Undefined instruction

• Privilege violation

• Hardware and power

failure



Exception RequirementsException Requirements

• Synchronous vs. asynchronous

– I/O exceptions: Asyncronous
• Allow completion of current instruction

– Exceptions within instruction: Synchronous
• Harder to deal with

• User requested vs. coerced

– Requested predictable and easier to handle

• User maskable vs. unmaskable

• Resume vs. terminate

– Easier to implement exceptions that
terminate program execution



Stopping & RestartingStopping & Restarting

ExecutionExecution

• Some exceptions require restart of

instruction

– e.g. Page fault in MEM stage

• When exception occurs, pipeline control

can:

– Force a trap instruction into next IF stage

– Until the trap is taken, turn off all writes for

the faulting (and later) instructions

– OS exception-handling routine saves

faulting instruction PC



Stopping & RestartingStopping & Restarting

ExecutionExecution
• Precise exceptions

– Instructions before the faulting one complete

– Instructions after it restart

– As if execution were serial

• Exception handling complex if faulting
instruction can change state before exception
occurs

• Precise exceptions simplifies OS

• Required for demand paging



Pipeline exceptions must follow order of execution of faulting

instructions not according to the time they occur

Exceptions in MIPSExceptions in MIPS

• Multiple exceptions might occur since multiple instructions are

executing

– (LW followed by DIV might cause page fault and an arith. exceptions

in same cycle)

• Exceptions can even occur out of order

– IF page fault before preceeding MEM page fault

Pipeline Stage Problem exceptions occurring

IF
Page fault on instruction fetch; misaligned
memory access; memory protection
violation

ID Undefined or illegal opcode

EX Arithmetic exception

MEM
Page fault on data fetch; misaligned
memory access; memory protection
violation

WB None



Precise Exception HandlingPrecise Exception Handling

• The MIPS Approach:
– Hardware posts all exceptions caused by a given instruction

in a status vector associated with the instruction

– The exception status vector is carried along as the instruction
goes down the pipeline

– Once an exception indication is set in the exception status
vector, any control signal that may cause a data value to be
written is turned off

– Upon entering the WB stage the exception status vector is
checked and the exceptions, if any, will be handled according
the time they occurred

– Allowing an instruction to continue execution till the WB stage
is not a problem since all write operations for that instruction
will be disallowed



Instruction Set ComplicationsInstruction Set Complications

• Early-Write Instructions
– MIPS only writes late in pipeline

– Machines with multiple writes usually require
capability to rollback the effect of an instruction
• e.g. VAX auto-increment,

– Instructions that update memory state during
execution, e.g. string copy, may need to save &
restore temporary registers

• Branching mechanisms
– Complications from condition codes, predictive

execution for exceptions prior to branch

• Variable, multi-cycle operations
– Instruction can make multiple writes


